矩阵的基本概念及其意义以及常见的 特殊矩阵
什么是矩阵
m行n列矩阵
方阵
当m=n时,成为方阵
列向量
一行数,即m=1
行向量
一列数,即n=1
两个矩阵相等
1.两个矩阵的行和列都相同
2.对应位置的元素也要相同
零矩阵
每个元素都是0
对角矩阵
记作:
单位矩阵
是特殊的对角矩阵,一般记作
E
E
E or
I
I
I
一种线性变换
从一个
R
n
\R^n
Rn空间映射到
R
m
R^m
Rm空间。
矩阵的加减法数乘以及性质
加减法的前提条件:A和B矩阵在维度上相同(行列数相同)
注意:
C
=
A
+
B
C=A+B
C=A+B
C
m
×
n
C_{m\times n}
Cm×n
μ
,
λ
∈
R
\mu,\lambda \in R
μ,λ∈R
矩阵的乘法以及性质
①A矩阵的行列
m
×
s
m \times s
m×s B矩阵的
s
×
n
s \times n
s×n,即A的s列等于B的s行才能相乘
A
m
×
s
×
B
s
×
n
=
C
m
×
n
A_{m \times s} \times B_{s\times n}=C_{m\times n}
Am×s×Bs×n=Cm×n
矩阵运算以及在深度学习中的应用
这是一图,我们人类看是这样的
在这里插入图片描述
(左图是我们人类可以识别的“1”,右图是电脑可以识别的矩阵列-1414)
为计算方便,我们这里假设图片是1010=100维的一个向量
长这样
将矩阵做一个特征空间变换,如下图
我们有一个10*10=100维的一个向量,经过W1(100*512)变换得到Y向量(512维)
补充:ReLU激活函数:简单之美
softmax 变换函数 Sigmod/Softmax变换
提一点:softmax函数将任意n维的实值向量转换为取值范围在(0,1)之间的n维实值向量,并且总和为1
经过softmax变换过后,实际上是将0-9这10个数字分类,得到每一个类别的概率,谁大归为谁!
矩阵的迹,矩阵的转置,对称矩阵(协方差矩阵)
矩阵的迹:主对角线元素之和
t
r
(
A
)
=
Σ
a
i
i
tr(A)=\Sigma a_{ii}
tr(A)=Σaii
两个矩阵不满足交换律,但是
t
r
(
A
B
)
=
t
r
(
B
A
)
tr(AB)=tr(BA)
tr(AB)=tr(BA)
矩阵的转置:
行——>列
列——>行
记作
A
T
A^T
AT
性质:
对称矩阵
定义:设A为
n
n
n阶方阵,如果满足
A
T
=
A
A^T=A
AT=A,即
a
i
j
=
a
j
i
a_{ij}=a_{ji}
aij=aji
性质:它的元素以对角线为对称轴对应相等。单位矩阵、对角矩阵都是对称阵
协方差矩阵
定义:它的定义来自于,N个样本,每个样本的特征维度为n
X
=
(
x
1
T
,
,
,
,
x
N
T
)
N
∗
n
T
X=(x_{1}^T,,,,x_{N}^T)_{N*n}^T
X=(x1T,,,,xNT)N∗nT
X
T
=
(
X
1
,
X
2
,
,
,
,
,
X
N
)
n
∗
N
X^T=(X_1,X_2,,,,,X_N)_{n*N}
XT=(X1,X2,,,,,XN)n∗N
X
T
X
n
∗
n
X^TX_{n*n}
XTXn∗n为样本N的协方差矩阵
协方差矩阵就是对称阵