【线性代数】矩阵的基本概念和运算性质

矩阵的基本概念及其意义以及常见的 特殊矩阵

什么是矩阵

在这里插入图片描述
m行n列矩阵

方阵

当m=n时,成为方阵

列向量

一行数,即m=1

行向量

一列数,即n=1

两个矩阵相等

1.两个矩阵的行和列都相同
2.对应位置的元素也要相同

零矩阵

每个元素都是0

对角矩阵

在这里插入图片描述
记作:在这里插入图片描述

单位矩阵

是特殊的对角矩阵,一般记作 E E E or I I I
在这里插入图片描述

一种线性变换

在这里插入图片描述
从一个 R n \R^n Rn空间映射到 R m R^m Rm空间。

矩阵的加减法数乘以及性质

在这里插入图片描述
加减法的前提条件:A和B矩阵在维度上相同(行列数相同)
注意:
C = A + B C=A+B C=A+B
C m × n C_{m\times n} Cm×n
μ , λ ∈ R \mu,\lambda \in R μ,λR

矩阵的乘法以及性质

在这里插入图片描述
①A矩阵的行列 m × s m \times s m×s B矩阵的 s × n s \times n s×n,即A的s列等于B的s行才能相乘
A m × s × B s × n = C m × n A_{m \times s} \times B_{s\times n}=C_{m\times n} Am×s×Bs×n=Cm×n
在这里插入图片描述

矩阵运算以及在深度学习中的应用

这是一图,我们人类看是这样的
在这里插入图片描述
在这里插入图片描述
(左图是我们人类可以识别的“1”,右图是电脑可以识别的矩阵列-1414)
为计算方便,我们这里假设图片是10
10=100维的一个向量
长这样
在这里插入图片描述
将矩阵做一个特征空间变换,如下图
我们有一个10*10=100维的一个向量,经过W1(100*512)变换得到Y向量(512维)
在这里插入图片描述
补充:ReLU激活函数:简单之美

在这里插入图片描述
softmax 变换函数 Sigmod/Softmax变换
提一点:softmax函数将任意n维的实值向量转换为取值范围在(0,1)之间的n维实值向量,并且总和为1
经过softmax变换过后,实际上是将0-9这10个数字分类,得到每一个类别的概率,谁大归为谁

矩阵的迹,矩阵的转置,对称矩阵(协方差矩阵)

矩阵的迹:主对角线元素之和
t r ( A ) = Σ a i i tr(A)=\Sigma a_{ii} tr(A)=Σaii
两个矩阵不满足交换律,但是
t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)
矩阵的转置:
行——>列
列——>行
记作
A T A^T AT

性质:
在这里插入图片描述
对称矩阵
定义:设A为 n n n阶方阵,如果满足 A T = A A^T=A AT=A,即 a i j = a j i a_{ij}=a_{ji} aij=aji
性质:它的元素以对角线为对称轴对应相等。单位矩阵、对角矩阵都是对称阵
协方差矩阵
定义:它的定义来自于,N个样本,每个样本的特征维度为n
X = ( x 1 T , , , , x N T ) N ∗ n T X=(x_{1}^T,,,,x_{N}^T)_{N*n}^T X=(x1T,,,,xNT)NnT
X T = ( X 1 , X 2 , , , , , X N ) n ∗ N X^T=(X_1,X_2,,,,,X_N)_{n*N} XT=(X1,X2,,,,,XN)nN
X T X n ∗ n X^TX_{n*n} XTXnn为样本N的协方差矩阵
协方差矩阵就是对称阵

### 回答1: 以下是一些大学线性代数中的经典例题: 1. 求解线性方程组: x + 2y - z = 3 2x - y + 3z = 7 3x + y - 2z = 4 2. 求矩阵的逆: A = [1 2; 3 4] 3. 求向量的内积和外积: a = [1 2 3], b = [4 5 6] 4. 求矩阵的特征值和特征向量: A = [1 2; 2 1] 5. 求矩阵的行列式: A = [1 2 3; 4 5 6; 7 8 9] 这些例题都是大学线性代数中比较常见的例题,通过练习这些例题可以帮助学生加深对线性代数的理解和掌握。 ### 回答2: 大学线性代数中,矩阵是一个重要的概念。矩阵的代数运算性质在解决实际问题中起到了重要作用。下面我将介绍一道经典例题。 考虑一个线性方程组: x + 2y + 3z = 6 2x + 4y + 6z = 12 3x + 6y + 9z = 18 我们可以用矩阵的形式表示这个线性方程组: Ax = b 其中,A是一个3×3的系数矩阵,x是未知向量,b是常量向量。 为了求解这个线性方程组,我们可以通过矩阵的逆来解得x。首先,我们需要计算矩阵A的逆矩阵A⁻¹。 根据矩阵性质,若矩阵A存在逆矩阵,那么AA⁻¹=I,其中I是单位矩阵。 对于给定的矩阵A,我们可以通过高斯-约旦消元法来计算它的逆矩阵。 首先,我们将矩阵A与单位矩阵连接在一起形成一个增广矩阵,即[A | I]。 然后,我们对增广矩阵进行行变换,使得A的左半部分变为单位矩阵,并使得右半部分变为逆矩阵。 最后,我们得到了增广矩阵的右半部分,即逆矩阵A⁻¹。 对于本例中的线性方程组,经过计算,我们得到了矩阵A的逆矩阵A⁻¹为: 1 0 0 0 1 0 0 0 1 接下来,我们将逆矩阵与方程组的常量向量b相乘,即A⁻¹b,得到未知向量x的解。 经过计算,我们得到了未知向量x的解为: x = 6 y = 0 z = 0 因此,原线性方程组的解为x = 6,y = 0,z = 0。 ### 回答3: 线性代数中有一道经典例题是求解矩阵的特征值和特征向量。特征值和特征向量是在矩阵运算中非常重要的概念,它们可以帮助我们了解矩阵的特性和性质。 给定一个n阶方阵A,如果存在一个非零向量x使得Ax=kx,其中k为一个常数,则称k为矩阵A的特征值,x为对应于特征值k的特征向量。 解题思路如下: 1. 先求出矩阵A的特征多项式f(λ) = |A - λI|,其中I为单位矩阵。 2. 根据特征多项式f(λ) = 0,求出所有的特征值λ。 3. 对于每个特征值λ,代入方程(A - λI)x = 0,求解特征向量x。 举个例子: 假设有一个2阶方阵A = [[1, 2], [3, 4]],我们来求解其特征值和特征向量。 1. 求解特征多项式f(λ) = |A - λI| = |[[1-λ, 2], [3, 4-λ]]| = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ - 2. 2. 令f(λ) = 0,得到特征多项式的根为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2。 3. 根据(A - λI)x = 0,代入λ1得到[[1 - λ1, 2], [3, 4 - λ1]]x = 0,解这个方程组得到一个特征向量x1 = [1, (λ1 - 1)/2]。 同理,代入λ2得到[[1 - λ2, 2], [3, 4 - λ2]]x = 0,解这个方程组得到一个特征向量x2 = [1, (λ2 - 1)/2]。 因此,矩阵A的特征值为λ1 = (5 + √33)/2, λ2 = (5 - √33)/2,对应的特征向量分别为x1 = [1, (λ1 - 1)/2],x2 = [1, (λ2 - 1)/2]。 通过求解矩阵的特征值和特征向量,我们可以揭示矩阵性质和特点,对于线性代数的学习和应用有很大帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wency(王斯-CUEB)

我不是要饭的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值