- 奇异矩阵:该矩阵的秩不是满秩,就是对应的行列式等于0的方阵。
- 特征方程在复数范围内恒有解。故n阶矩阵复数范围内有n个特征值。
- 一个特征值对应无穷个特征向量。(一个解系),特征向量的极大无关组是n-r
特征向量相加、减还是特征向量(齐次方程组解的性质)。对于给定的矩阵A,它的特征向量v 是经过A线性变换的线性变换后得到的新向量仍然与 v保持同一条直线上,它的长度可能会改变。 - 矩阵是个线性变化,将矩阵A作用于向量v,若向量v方向不改变,则v是应特征值,
λ
\lambda
λ是A作用与V后,V的长度及方向的变化量(方向仅限于不变与相反方向)
A矩阵可逆充要条件是n个特征值全不为0.(特征值的关系)