线性代数-特征值与特征方程 相似矩阵对角化

在这里插入图片描述

  • 奇异矩阵:该矩阵的秩不是满秩,就是对应的行列式等于0的方阵。
  • 特征方程在复数范围内恒有解。故n阶矩阵复数范围内有n个特征值。
  • 一个特征值对应无穷个特征向量。(一个解系),特征向量的极大无关组是n-r
    特征向量相加、减还是特征向量(齐次方程组解的性质)。对于给定的矩阵A,它的特征向量v 是经过A线性变换的线性变换后得到的新向量仍然与 v保持同一条直线上,它的长度可能会改变。
  • 矩阵是个线性变化,将矩阵A作用于向量v,若向量v方向不改变,则v是应特征值, λ \lambda λ是A作用与V后,V的长度及方向的变化量(方向仅限于不变与相反方向)
    在这里插入图片描述
    A矩阵可逆充要条件是n个特征值全不为0.(特征值的关系)在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值