什么是特征值/特征向量?
方阵的一个属性,描述方阵的“特征”
A u ⃗ = λ u ⃗ A\vec{u} = \lambda\vec{u} Au=λu
不改变方向,只伸缩
λ \lambda λ 称为矩阵A的特征值(eigenvalue)
u ⃗ \vec{u} u称为A对应于 λ \lambda λ的特征向量(eigenvector)
- 求解:特征方程
特征向量不考虑零向量(平凡解) → u ⃗ ≠ 0 \rightarrow \vec{u} \ne 0 →u=0
( A − λ I ) u ⃗ = 0 (A - \lambda I)\vec{u} = 0 (A−λI)u=0
有非零解 → \rightarrow → 特征方程: d e t ( A − λ I ) = 0 det(A-\lambda I) = 0 det(A−λI)=0
对每一个 λ \lambda λ 的特征向量不唯一
λ \lambda λ 对应的特征向量 u ⃗ , k u ⃗ . . . \vec{u}, k\vec{u} ... u,ku... 组成了 A − λ I A-\lambda I A−λI 零空间(去除零向量)
λ \lambda λ 对应的特征空间: E λ = { O } ∪ { λ 的 特 征 向 量 } E_\lambda = \{O\} \cup \{\lambda的特征向量\}

博客探讨了特征值和特征向量的概念,指出特征值描述方阵的属性,特征向量表示方向不变的伸缩。文章讨论了特征值的性质、如何在numpy中求解特征值和特征向量,并介绍了矩阵的相似对角化及其应用,如矩阵幂运算和动态系统分析。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



