特征值



特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。


简介编辑

又称 本征值 英文名eigen value。“特征”一词译自德语的eigen,由 希尔伯特在1904年首先在这个意义下使用( 赫尔曼·冯·亥姆霍兹在更早的时候也在类似意义下使用过这一概念)。eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”—这强调了特征值对于定义特定的变换上是很重要的。 [1]  

特征值定义

编辑

特征值基本定义

A为n阶矩阵,若存在 常数λ及n维 非零向量x,使得 Ax=λx,则称λ是矩阵 A的特征值,x是 A属于特征值λ的 特征向量[2]  
A的所有特征值的全体,叫做A的谱,记为
.

特征值广义特征值

如将特征值的取值扩展到 复数领域,则一个广义特征值有如下形式:
其中 AB为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程( AB) ν=0,得到det( AB)=0(其中det即行列式)构成形如 AB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
B可逆,则原关系式可以写作
,也即标准的特征值问题。当 B为非可逆矩阵(无法进行逆变换)时, 广义特征值问题应该以其原始表述来求解。
如果 AB实对称矩阵,则特征值为 实数。这在上面的第二种等价关系式表述中并不明显,因为
A矩阵未必是对称的。 [1]  

特征值计算方法

编辑
求特征值及特征向量 求特征值及特征向量
求n阶矩阵A的特征值的基本方法:
根据定义可改写为关系式
单位矩阵(其形式为主对角线元素为λ-
,其余元素乘以-1)。要求向量
具有非零解,即求 齐次线性方程组
有非零解的值
。即要求行列式
。 解次行列式获得的
值即为 矩阵 A的特征值。将此值回代入原式求得相应的
,即为输入这个行列式的特征向量。
具体操作以右图为例。
  
关于特征值
关于特征值 (3张)
定义1是一个 阶方阵(即使一个n*n的矩阵), 是一个数,如果方程
(1)
存在非零解向量 ,则称 的一个特征值,相应的非零解向量 称为属于特征值 的特征向量.
(1)式也可写成,
(2)
这是 个未知数 个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式
, (3)
上式是以 为未知数的一元 次方程,称为方阵 的特征方程.其左端 次多项式,记作 ,称为方阵 的特征多项式.
= =
=
显然, 的特征值就是特征方程的解.特征方程在复数范围内恒有解,其个数为方程的次数(重根按重数计算),因此, n阶矩阵 有n个特征值.
阶矩阵 的特征值为 由多项式的根与系数之间的关系,不难证明
(Ⅰ)
(Ⅱ)
的一个特征值,则 一定是方程 的根,因此又称特征根,若 为方程 重根,则 称为 重特征根.方程 的每一个非零解向量都是相应于 的特征向量,于是我们可以得到求矩阵 的全部特征值和特征向量的方法如下:
第一步:计算 的特征多项式
第二步:求出特征方程 的全部根,即为 的全部特征值;
第三步:对于 的每一个特征值 ,求出齐次线性方程组:
的一个基础解系 ,则 的属于特征值 的全部特征向量是
(其中 是不全为零的任意实数).
[注]:若的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.
由以上讨论可知,对于方阵 的每一个特征值,我们都可以求出其全部的特征向量.但对于属于不同特征值的特征向量,它们之间存在什么关系呢?这一问题的讨论在对角化理论中有很重要的作用.对此我们给出以下结论:
定理1 属于不同特征值的特征向量一定线性无关.

特征值基本应用

编辑

特征值求特征向量

A为n阶 矩阵,根据关系式 Ax=λx,可写出(λ E- A)x=0,继而写出 特征多项式E- A|=0,可求出矩阵 A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λi E- A)x=0,所求 解向量x就是对应的特征值λi的特征向量。

特征值判断相似矩阵的必要条件

设有n阶矩阵 AB,若 AB相似( AB),则有:
1、 A的特征值与 B的特征值相同——λ( A)=λ( B),特别地,λ( A)=λ( Λ), Λ为A的 对角矩阵
2、 A的特征多项式与 B的特征多项式相同——|λE- A|=|λ E-B|;
3、 A等于 B的迹——tr A=tr B/
,其中i=1,2,…n(即 主对角线上元素的和);
4、 A行列式值等于 B的行列式值——| A|=| B|;
5、 A等于 B的秩——r( A)=r( B)。 [2]  
因而 AB的特征值是否相同是判断 AB是否相似的根本依据。

特征值判断矩阵可对角化的充要条件

相似对角化 相似对角化
矩阵可 对角化有两个充要条件:1、矩阵有n个不同的 特征向量;2、特征向量重根的重数等于 基础解系的个数。对于第二个充要条件,则需要出现二重以上的重特征值可验证(一重相当于没有重根)。 [2]  
若矩阵 A可对角化,则其 对角矩阵 Λ的主对角线元素全部为 A的特征值,其余元素全部为0。(一个矩阵的对角阵不唯一,其特征值可以换序,但都存在由对应特征向量顺序组成的 可逆矩阵P使
= Λ

特征值更多应用

编辑
量子力学:
设A是 向量空间的一个 线性变换,如果空间中某一 非零向量通过A变换后所
奇异矩阵特征值 奇异矩阵特征值
得到的向量和X仅差一个常数因子,即AX=kX ,则称k为A的特征值,X称为A的属于特征值k的 特征向量特征矢量(eigenvector)。如在求解薛定谔波动方程时,在 波函数满足 单值、有限、连续性和 归一化条件下,势场中运动粒子的总能量(正)所必须取的特定值,这些值就是正的 本征值
设M是n阶 方阵, I是 单位矩阵, 如果存在一个数λ使得 M-λI 是 奇异矩阵(即不 可逆矩阵, 亦即 行列式为零), 那么λ称为M的特征值。
在A变换的作用下, 向量ξ仅仅在尺度上变为原来的λ倍。称ξ是A 的一个特征向量,λ是对应的特征值(本征值),是(实验中)能测得出来的量,与之对应在量子力学理论中,很多量并不能得以测量,当然,其他理论领域也有这一现象。
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值