给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
示例 1:
输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/maximum-product-subarray
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
首先想到:①【考虑没有零的情况,向数组中添加元素,不会减小数组乘积【绝对值】的大小】
(由于是整数,所以所有非零数的绝对值都≥1由此不会使乘积的绝对值减小)
②而且,只有没有零的子数组中,乘积才有可能大于0
因此,想到的解法是:
两个整型分别记录 子数组乘积的最大值,和当前连续非零子数组的乘积,从左向右遍历整个数组,遇见0就重置当前乘积的最大值为1继续遍历
但是如图的情况显然就解答错误:单取得一个999就比90要大
其实很好解决,从右向左再遍历一次就可以了
首先由于②,这里只需要讨论连续非零的数组即可,遇见零若max值小于零把max置为0即可,接下来讨论被0和首尾分割的一个个元素都非零的子串
首先,对于负数为偶数个的子数组:由于①,该子数组乘积最大的子数组必定为子数组中所有元素相乘
对于负数个数为奇数的子数组,例如下图:
由于①,我们应该让子数组越“长”越好,因此有红色和黄色两个“候选数组”,这两个数组再向左/右延长一位,都会使得乘积不可逆地变成负数。
而两个数组有公共部分(蓝色),实际上两个数组的相对大小取决于ab和hi的相对大小(绝对值)
而两个数组都可以由以上从左到右或者从右到左遍历算得乘积的值,只需要和记录的max值比较即可
class Solution {
public int maxProduct(int[] nums) {
int flag=1,max=Integer.MIN_VALUE;
for(int i=0;i<nums.length;i++){
if(nums[i]==0){
max=Math.max(max,0);
flag=1;
}else{
flag=flag*nums[i];
max=Math.max(max,flag);
}
}
flag=1;
for(int i=nums.length-1;i>=0;i--){
if(nums[i]==0){
max=Math.max(max,0);
flag=1;
}else{
flag=flag*nums[i];
max=Math.max(max,flag);
}
}
return max;
}
}