Llama 本地推理huggingFace模型的两种方式

 方式1:

from transformers import LlamaForCausalLM, AutoTokenizer

#下载好的hf模型地址
hf_model_path = './Llama-2-7b'
model = LlamaForCausalLM.from_pretrained(hf_model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(hf_model_path)

prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt")

# Generate
generate_ids = model.generate(inputs.input_ids, max_length=30)
res = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(res)

方式2:

import transformers,torch
from transformers import LlamaForCausalLM, AutoTokenizer

#下载好的hf模型地址
hf_model_path = './Llama-2-7b'

tokenizer = AutoTokenizer.from_pretrained(hf_model_path)
pipeline = transformers.pipeline(
    "text-generation",
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lookaroundd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值