题目描述:
输入n个整数,找出其中最小的K个数。例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,。
相关知识点回顾:
常用排序算法:
http://wiki.jikexueyuan.com/project/easy-learn-algorithm/fast-sort.html
桶排序
题目:期末考试完了老师要将同学们的分数按照从高到低排序。小哼的班上只有 5 个同学,这 5 个同学分别考了 5 分、3 分、5 分、2 分和 8 分,哎考的真是惨不忍睹(满分是 10 分)。接下来将分数进行从大到小排序,排序后是 8 5 5 3 2。你有没有什么好方法编写一段程序,让计算机随机读入 5 个数然后将这 5 个数从大到小输出?
分析:这个算法就好比有 11 个桶,编号从 0~10。每出现一个数,就将对应编号的桶中的放一个小旗子,最后只要数数每个桶中有几个小旗子就 OK 了。例如 2 号桶中有 1 个小旗子,表示 2 出现了一次;3 号桶中有 1 个小旗子,表示 3 出现了一次;5 号桶中有 2 个小旗子,表示 5 出现了两次;8 号桶中有 1 个小旗子,表示 8 出现了一次。
冒泡排序
回顾:
简化版的桶排序:它非常浪费空间!
冒泡排序的基本思想是:每次比较两个相邻的元素,如果他们的顺序错误就把他们交换过来。
例如我们需要将 12 35 99 18 76 这 5 个数进行从大到小进行排序。
首先比较第 1 位和第 2 位的大小,现在第 1 位是 12,第 2 位是 35。发现 12 比 35 要小,因为我们希望越小越靠后嘛,因此需要交换这两个数的位置。交换之后这 5 个数的顺序是 35 12 99 18 76。
按照刚才的方法,继续比较第 2 位和第 3 位的大小,第 2 位是 12,第 3 位是 99。12 比 99 要小,因此需要交换这两个数的位置。交换之后这 5 个数的顺序是 35 99 12 18 76。
根据刚才的规则,继续比较第 3 位和第 4 位的大小,如果第 3 位比第 4 位小,则交换位置。交换之后这 5 个数的顺序是 35 99 18 12 76。
最后,比较第 4 位和第 5 位。4 次比较之后 5 个数的顺序是 35 99 18 76 12。
好现在开始“第二趟”,目标是将第 2 小的数归位。首先还是先比较第 1 位和第 2 位,如果第 1 位比第 2 位小,则交换位置。交换之后这 5 个数的顺序是 99 35 18 76 12。接下来你应该都会了,依次比较第 2 位和第 3 位,第 3 位和第 4 位。注意此时已经不需要再比较第 4 位和第 5 位。因为在第一趟结束后已经可以确定第 5 位上放的是最小的了。第二趟结束之后这 5 个数的顺序是 99 35 76 18 12。
“第三趟”也是一样的。第三趟之后这 5 个数的顺序是 99 76 35 18 12。
现在到了最后一趟“第四趟”。有的同学又要问了,这不是已经排好了吗?还要继续?当然,这里纯属巧合,你可以用别的数试一试可能就不是了。
“冒泡排序”原理是:每一趟只能确定将一个数归位。即第一趟只能确定将末位上的数(既第 5 位)归位,第二趟只能将倒数第 2 位上的数(既第 4 位)归位,第三趟只能将倒数第 3 位上的数(既第 3 位)归位,而现在前面还有两个位置上的数没有归位,因此我们仍然需要进行“第四趟”。
快速排序算法:
回顾:快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。
基本步骤:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
题目:我们现在对“6 1 2 7 9 3 4 5 10 8”这个 10 个数进行排序。
步骤:首先在这个序列中随便找一个数作为基准数。为了方便,就让第一个数 6 作为基准数吧。
接下来,需要将这个序列中所有比基准数大的数放在 6 的右边,比基准数小的数放在 6 的左边,类似下面这种排列。
3 1 2 5 4 6 9 7 10 8
归并排序算法:
回顾:
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer)策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
思路:
思路1:实现一个排序算法,返回前k 个数字。(时间复杂度高)
Python实现1:
// An highlighted block
class Solution:
def GetLeastNumbers_Solution(self, tinput, k):
if len(tinput) < k:
return []
return self.quick_sort(tinput)[:k]
def quick_sort(self, list):
if len(list) < 2:
return list[:]
left = (self.quick_sort([i for i in list[1:] if i <= list[0]]))
right = (self.quick_sort([i for i in list[1:] if i > list[0]]))
return left + [list[0]] + right
python实现2:
// An highlighted block
# -*- coding:utf-8 -*-
class Solution:
#归并排序,O(nLogn)
def GetLeastNumbers_Solution(self, tinput, k):
if len(tinput) < k:
return []
return self.merge_sort(tinput)[:k]
def merge_sort(self, list):
if len(list) < 2:
return list[:]
left = self.merge_sort(list[:len(list)//2])
right = self.merge_sort(list[len(list)//2:])
return self.merge(left,right)
def merge(self,left, right):
res = []
while left and right:
res.append(left.pop(0)) if left[0] < right[0] else res.append(right.pop(0))
res += left if not right else right
return res