国内外有哪些做小样本学习团队

这篇内容列举了多位在人工智能领域有影响力的专家和研究者,包括Trevor Darrell、Bernt Schiele、Richard S. Zemel等,他们在UC Berkeley、Max Planck Institute、University of Toronto等知名机构担任教授或研究员,对计算机视觉、机器学习等领域有深入研究。此外,还包括在Google Brain工作的科学家以及在不同大学和公司的研究人员,他们的工作涵盖了从基础研究到应用开发的多个方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Trevor Darrell (https://www2.eecs.berkeley.edu/Faculty/Homepages/darrell.html) on the faculty of the CS Division at UC Berkeley

Bernt Schiele (https://www.mpi-inf.mpg.de/departments/computer-vision-and-machine-learning/people/bernt-schiele/) Max-Planck-Director at MPI Informatics and Professor at Saarland University

Richard S. Zemel (http://www.cs.toronto.edu/~zemel/inquiry/home.php) Professor,Department of Computer Science, University of Toronto

Alex Krizhevsky (https://www.cs.toronto.edu/~kriz) Google

Tao(Tony) Xiang (Tao (Tony) Xiang) University of Surrey

Kevin Swersky (http://www.cs.toronto.edu/~kswersky/) research scientist at Google Brain

Hugo Larochelle (https://mila.quebec/personne/hugo-larochelle/) Associate Professor at Google Brain

Nikos Komodakishttps://www.csd.uoc.gr/~hannover/LabsiteDraft/komodakis.html) postdoctoral research associate at the Computer Science Department of University of Crete.

Zeynep Akatahttps://eml-unitue.de/people/zeynep-akata)Professor of Computer Science, University of Tübingen

Spyros Gidarishttps://scholar.google.com/citations?user=7atfg7EAAAAJ&hl=en)valeo ai

Yanwei Fu(付彦伟) (Yanwei Fu: EECS-QMUL) School of Date Science, Fudan University

Yuxiong Wang(王宇雄) (Yuxiong Wang Homepage) Robotics Institute, School of Computer Science, Carnegie Mellon University

Qianru Sun(孙倩茹)https://qianrusun.com/) Assistant Professor Singapore Management University

Zhiwu Lu(卢志武) (卢志武-师资队伍-教师科研 - 中国人民大学信息学院) School of Information, Renmin University of China

Wenbin Li(李文斌)https://cs.nju.edu.cn/liwenbin/)an Assistant Researcher of the Department of Computer Science and Technology at Nanjing University

Jiebo Luo (https://www.cs.rochester.edu/people/faculty/luo_jiebo/index.html) Data Science CoE Distinguished Researcher,Goergen Institute for Data Science

强化学习(Reinforcement Learning, RL)作为人工智能领域的一个重要分支,自上世纪80年代以来经历了爆炸式的发展。其核心思想是让智能体在与环境的交互中,通过不断试错和奖惩机制学习最优策略。在中国,随着科技崛起,强化学习的研究与应用得到了显著推动。 国内方面,早在2000年左右,科研人员就开始关注这一领域的理论探索,如吴军等学者对Q-learning算法进行了本土化的改进和应用。随着深度学习的兴起,特别是在2010年之后,阿里巴巴、腾讯等大型互联网企业投入大量资源,支持实验室开展强化学习研究,例如百度的DeepMind Lab项目就是强化学习在游戏控制上的典型代表。政策层面,政府也积极推动人工智能技术的研发,比如“新一代人工智能发展规划”为强化学习的发展提供了良好的政策环境。 国际上,强化学习的发展同样迅猛。Google的DeepMind团队在2016年推出了AlphaGo,首次实现了围棋人机对弈的胜利,展示了强化学习在复杂决策任务中的突破。此后,强化学习在星际争霸II、Atari游戏等领域的成果更是引人瞩目。马尔科夫决策过程(Markov Decision Process, MDP)成为研究的核心模型,而DQN(Deep Q-Network)、Actor-Critic架构等创新方法不断涌现。 近年来,强化学习被广泛应用于自动驾驶、机器人控制、推荐系统等领域,并且在医疗诊断、金融投资等领域展现出巨大潜力。同时,随着大数据、云计算和高性能计算的发展,强化学习的实验效率得到提升,研究者能够处理更复杂的环境模拟和长期依赖性问题。 然而,尽管取得了许多成就,强化学习仍面临挑战,如样本效率低下、模型解释性不足以及解决高维连续动作空间问题等。未来的研究方向将着重于结合无监督学习、元学习等新方法提高学习效率,以及探索更为安全、可靠的强化学习算法设计。 总结起来,强化学习从早期的概念引入到如今在全球范围内的广泛应用,中国与世界的科研力量共同推进了这一前沿技术的进步。面对新的机遇和挑战,强化学习将继续在科研与产业界创造更多的价值,引领人工智能的未来发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值