BUG:C++/CUDA extensions. xFormers was built for: PyTorch 2.1.2+cu121 with CUDA 1201 (you have 2.1.0+

BUG:C++/CUDA extensions. xFormers was built for: PyTorch 2.1.2+cu121 with CUDA 1201 (you have 2.1.0+cpu)

环境

linux
python 3.10
torch 2.1.2+cu118
vllm 0.3.3+cu118
xformers 0.0.23.post1

详情

使用vllm启动大模型出现的错误。

原因:xformers版本和torch、cuda不匹配。我机器的cuda版本只支持到11.8,而 pip install xformers 默认安装的版本需要cuda12.1。

解决方法

安装 xformers 支持torch2.1.2,python3.10,cuda 11.8的版本

【1】访问

### 解决方案 在安装 Isaac Gym 的过程中,如果遇到卡在 PyTorch 扩展路径的问题(`Using /home/zdj/.cache/torch_extensions/py38_cu117 as PyTorch extensions root`),可能是由于缓存中的锁文件未被正确释放所致。以下是具体的解决方案: #### 删除锁定文件 当编译器尝试访问 `.cache/torch_extensions` 文件夹时,可能会因为存在锁文件而导致进程停滞。可以通过手动删除这些锁文件来解决问题。 定位到 `.cache/torch_extensions` 目录下对应的 `lock` 文件并将其移除: ```bash rm -f ~/.cache/torch_extensions/*/lock ``` 此命令会清除所有可能存在的锁文件[^1]。 #### 清理构建目录 除了清理锁文件外,还可以进一步清空整个扩展缓存目录以确保没有残留的临时文件影响后续操作: ```bash rm -rf ~/.cache/torch_extensions/* mkdir -p ~/.cache/torch_extensions/ ``` 上述步骤能够重新初始化 PyTorch 扩展根目录结构,从而避免潜在冲突。 #### 验证环境变量设置 有时,错误也可能源于不完整的环境配置。确认当前环境中是否包含了必要的工具链支持,比如 CUDA 和 FFmpeg 等依赖项。对于后者来说,需检查其二进制可执行程序是否已被加入全局搜索路径之中。按照先前描述的方法编辑 `/etc/profile` 并追加相应声明即可完成此项工作[^2]: ```bash export PATH=$PATH:/usr/local/ffmpeg/bin source /etc/profile ``` #### 排查磁盘与文件系统异常 假如以上措施均未能奏效,则有必要审视底层存储状况是否存在隐患。例如 XFS 类型分区发生写回失误便可能导致类似的冻结现象[^3]。此时建议借助专门诊断工具如 `xfs_repair` 来修复受损的数据卷: ```bash umount /dev/mapper/klas_okaygis--20136-root xfs_repair -L /dev/mapper/klas_okaygis--20136-root mount /dev/mapper/klas_okaygis--20136-root / reboot ``` 注意:实际设备名称应依据具体情况调整。 --- ### 总结 综上所述,针对 isaacgym 安装期间停留在指定阶段的情况,推荐依次采取以下行动: 1. 移除相关联的锁机制; 2. 整理目标区域内的遗留数据; 3. 核实外部库关联的各项参数设定准确性; 4. 若依旧存在问题则深入考察硬件层面因素干扰可能性。 通过遵循这一流程,大多数情形都能够得到有效缓解甚至彻底消除。 ```python import os from pathlib import Path def clean_torch_cache(): cache_dir = Path.home() / ".cache" / "torch_extensions" lock_files = list(cache_dir.rglob('lock')) for file in lock_files: try: file.unlink() print(f"Deleted {file}") except Exception as e: print(f"Failed to delete {file}: {e}") clean_torch_cache() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值