xformer\vllm与cuda版本

文章讨论了在安装xformer库时,由于不同CUDA版本的兼容性问题,建议使用CUDA11.7时安装xformers版本在0.0.22及以下,如vllm则需0.2.0或更低版本。针对cu11.8和其他版本,常规安装通常可行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

默认不指定xformer版本可能安装最新版,对于之前版本的cuda会不兼容
指定cuda版本安装:
cuda11.7安装 pip3 install xformers==0.0.22 及以下版本,例如
0.0.21、0.0.20

pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118

pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121

vllm 如果使用cuda11.7 需要使用版本小于等于0.2.0
pip install vllm==0.2.0
cuda11.7以上其他版本正常安装应该可以。

03-18
### Xformer 及其相关技术概述 Xformer 是一种专注于 Transformer 架构及其变体的框架库,旨在提供高效、灵活且易于扩展的功能支持。它不仅涵盖了经典的 Transformer 模型[^1],还集成了多种改进版本以及优化方法。 #### 什么是 XformerXformer 是一个用于实现各种 Transformer 类模型的开源工具包。它的设计目标是简化复杂架构的研究开发过程,同时提高计算效率和资源利用率。通过模块化的设计理念,开发者可以轻松构建自定义的 Transformer 结构并应用于不同场景。 以下是关于 **Swin Transformer** 的一些背景信息作为补充说明: Swin Transformer 提出了基于分层结构和移位窗口机制的新颖视觉变换器方案。该方法显著降低了传统全局注意力操作带来的高昂计算成本,并增强了局部特征表达能力。这种创新思路也启发了许多后续研究工作,在计算机视觉领域产生了深远影响。 #### 主要特性 - 支持主流Transformer变种(如BERT,GPT,Swin等) - 高效内存管理策略减少训练开销 - 易于集成新组件满足特定需求 下面展示了一个简单的例子来演示如何利用Python代码加载预训练好的Swin模型: ```python from transformers import SwinModel, SwinConfig config = SwinConfig(image_size=224) model = SwinModel.from_pretrained("microsoft/swin-tiny-patch4-window7-224", config=config) print(model) ``` 此脚本片段展示了从Hugging Face Transformers库中获取已训练完毕的小规模Swin实例的方法。 ### 总结 综上所述,Xformer不仅仅局限于某单一类型的神经网络;相反地,它是围绕着整个家族而建立起来的一个强大平台. 它允许研究人员快速实验不同的设计方案, 并推动前沿科技的发展.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值