【poj3070】 Fibonacci 【矩阵乘法】


讲解:点击打开链接


Fibonacci
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15917 Accepted: 11188

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.



题目描述 
斐波那契数列是由如下递推式定义的数列 
F0=0  
F1=1  
Fn+1=Fn+1+Fn  
求这个数列第n项的值对 104 取余后的结果。 
限制条件 
  0n1016

    我也是刚刚才搞懂了矩阵乘法(如果你不知道什么是矩阵乘法的话,右转百度百科),于是来应用一下新知识,如有表述不到位的地方请见谅。 
下面进入正文

首先,我们先介绍一下对于斐波那契数列如何求解。把斐波那契数列的递推式表示成矩阵就得到下面的式子 
(Fn+2Fn+1)=   (1110) (Fn+1Fn)

我们发现式子里有个固定的矩阵  (1110)

记这个矩阵为A,则有 
(Fn+1Fn)= An (F1F0)= An (10)

因此只要求出 An 就可以求出 Fn 了。关于 An 的计算我们可以采用类似快速幂的算法,在 O(logn) 时间里求出第n项的值。(转自:点击打开链接


#include<cstdio>
 
int n,a[2][2],b[2][2];
 
void mul(int a[2][2],int b[2][2],int ans[2][2])
{
    int t[2][2];
    for (int i=0;i<2;i++)
        for (int j=0;j<2;j++) 
		{
            t[i][j]=0;
            for (int k=0;k<2;k++) 
			t[i][j]=(t[i][j]+a[i][k]*b[k][j])%10000;
        }
    for (int i=0;i<2;i++)
        for (int j=0;j<2;j++) 
		ans[i][j]=t[i][j];
}
void pow(int k) 
{
    while (k) 
	{
        if (k%2==1) 
		mul(a,b,b);
        k/=2;
        mul(a,a,a);
    }
}
int main() 
{
    while (scanf("%d",&n)!=EOF) 
	{
        if (n==-1) 
		break;
        a[0][0]=a[0][1]=a[1][0]=1;a[1][1]=0;
        
        b[0][0]=b[1][1]=1;
        b[1][0]=b[0][1]=0;
        
        pow(n);
        printf("%d\n",b[1][0]);
    }
    return 0;
}

这道题还碰见一种神奇的操作,我还没理解到底是什么规律。。

来自:(点击打开链接

#include<stdio.h>
int a[100050];
void f() 
{
	a[0] = 0;
	a[1] = 1;
	for (int i  = 2; i <= 100050; i ++) 
	{
		a[i] = (a[i - 1] + a[i - 2]) % 10000;
	}
}
int main () 
{
	int n;
	while (scanf("%d", &n) != EOF) 
	{
		if(n == -1) break;
		f();
		printf("%d\n", a[n % 15000]);
	}
	return 0;
}







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值