题意:求第n项斐波那契数的后四位 即mod10000;
分析:题意给了方法,用1 1 1 0矩阵的n次幂,就牵扯到了一个矩阵的快速幂模板。
代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <ctime>
#include <stdlib.h>
#include <string.h>
#define N 10000
#define InF 10000000
#define mem(a) memset(a,0,sizeof(a))
#define LL long long
using namespace std;
double PI=acos(-1.0);
double eps=1e-5;
int n;
struct matrix
{
int a[2][2];
} origin,res;
matrix multiply(matrix x,matrix y)//矩阵相乘
{
matrix temp;
memset(temp.a,0,sizeof(temp.a));
for(int i=0; i<2; i++)
{
for(int j=0; j<2; j++)
{
temp.a[i][j]=0;
for(int k=0; k<2; k++)
{
temp.a[i][j]=(temp.a[i][j]+x.a[i][k]*y.a[k][j])%10000;
}
}
}
return temp;
}
void init()
{
origin.a[0][0]=1;
origin.a[0][1]=1;
origin.a[1][1]=0;
origin.a[1][0]=1;
memset(res.a,0,sizeof(res.a));
res.a[0][0]=res.a[1][1]=1;//初始化为单位矩阵
}
void calc(int n)//模板
{
init();
while(n)
{
if(n&1)
res=multiply(res,origin);
n>>=1;
origin=multiply(origin,origin);
}
cout<<res.a[0][1]%10000<<endl;
}
int main()
{
while(cin>>n)
{
if(n==-1)
break;
calc(n);
}
return 0;
}