[分享] Python实现的基于深度学习的手写数字识别算法

本文将采用深度学习中的卷积神经网络来训练手写数字识别模型。使用卷积神经网络建立合理的模型结构,利用卷积层中设定一定数目的卷积核(即滤波器),通过训练数据使模型学习到能够反映出十个不同手写提数字特征的卷积核权值,最后通过全连接层使用softmax函数给出预测数字图对应每种数字可能性的概率多少。

本文以学习基于深度学习的手写数字识别算法的过程为线索,由简入深,从最基础的感知器到卷积神经网络,学习和理解深度学习的相关基本概念、模型建立以及训练过程。在实现典型LeNet-5网络结构的同时,通过更改超模型结构、超参数进一步探索这些改变对模型准确率的影响。最后通过使用深度学习框架Keras以MNIST作为训练数据集训练出高识别率的模型并将其与OpenCV技术结合应用到摄像头上实现实时识别数字,使用合理的模型结构,在测试集上识别准确率达到99%以上,在与摄像头结合实际应用中的识别效果达到90%以上。


6607861-87b430c180ac2357.png

参考博文和源码下载地址:

https://www.write-bug.com/article/74.html

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
手写数字识别深度学习中比较经典的问题之一,可以使用卷积神经网络(Convolutional Neural Network, CNN)实现。以下是使用PyTorch实现手写数字识别的示例代码,其中使用了Volov5算法: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import MNIST import timm # 定义网络 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(128 * 7 * 7, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv2(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = self.conv3(x) x = nn.functional.relu(x) x = nn.functional.max_pool2d(x, 2) x = x.view(-1, 128 * 7 * 7) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) return x # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5], std=[0.5]) ]) # 加载数据集 train_dataset = MNIST(root='./data', train=True, transform=transform, download=True) test_dataset = MNIST(root='./data', train=False, transform=transform) train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False) # 定义模型、损失函数、优化器 model = Net().to('cuda') loss_fn = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): model.train() train_loss = 0.0 train_acc = 0.0 for i, (images, labels) in enumerate(train_loader): images = images.to('cuda') labels = labels.to('cuda') optimizer.zero_grad() outputs = model(images) loss = loss_fn(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc / len(train_loader.dataset) model.eval() test_loss = 0.0 test_acc = 0.0 for i, (images, labels) in enumerate(test_loader): images = images.to('cuda') labels = labels.to('cuda') outputs = model(images) loss = loss_fn(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc / len(test_loader.dataset) print("Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}".format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc)) # 保存模型 torch.save(model.state_dict(), 'mnist_cnn.pth') ``` 在上述代码中,定义了一个三层卷积神经网络,使用MNIST数据集进行训练和测试,并且使用Volov5算法进行优化。其中,模型训练采用了交叉熵损失函数和Adam优化器,训练10个epochs后保存模型参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值