DRL for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks

该博客介绍了如何使用深度强化学习(DRL)解决无线充电移动边缘计算网络中的在线计算任务优化问题。通过二元离散offloading决策与连续时间分配的结合,DRL以变化的信道增益为输入,通过量化offloading解决方案并计算凸优化问题的Q值,选择最佳策略。最后,剩余的时间分配问题成为凸优化,便于求解。

[1]

L. Huang, S. Bi, and Y.-J. A. Zhang, ‘Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks’, IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2581–2593, 2020, doi: 10.1109/TMC.2019.2928811.

建模针对的场景是 1个AP ,N个Device。AP场景是针对TDMA,且在一个时间T内,会有一部分时间能量传递,其时间为a。

问题建模:

目标是最大化rate,注意 每个时间段channel gain \textbf{h} 是一个变化量。

 

决策变量:

第一类: offloading 变量x,本文使用的是binary offloading

第二类: 时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远离科研,保命要紧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值