[1]
L. Huang, S. Bi, and Y.-J. A. Zhang, ‘Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks’, IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2581–2593, 2020, doi: 10.1109/TMC.2019.2928811.
建模针对的场景是 1个AP ,N个Device。AP场景是针对TDMA,且在一个时间T内,会有一部分时间能量传递,其时间为a。

问题建模:
目标是最大化rate,注意 每个时间段channel gain 是一个变化量。

决策变量:
第一类: offloading 变量x,本文使用的是binary offloading
第二类: 时间

该博客介绍了如何使用深度强化学习(DRL)解决无线充电移动边缘计算网络中的在线计算任务优化问题。通过二元离散offloading决策与连续时间分配的结合,DRL以变化的信道增益为输入,通过量化offloading解决方案并计算凸优化问题的Q值,选择最佳策略。最后,剩余的时间分配问题成为凸优化,便于求解。
最低0.47元/天 解锁文章
3670

被折叠的 条评论
为什么被折叠?



