Mobile Edge Computing学习笔记(一)从通信领域看移动边缘计算:现有的经典结构与模型

MEC最近越来越火了,inforcom,mobicom各种顶会每年都有大量产出。看了一篇 IEEE COMMUNICATIONS SURVEYS & TUTORIALS的综述:A Survey on Mobile Edge Computing: The Communication Perspective,记录一下收获。

一、前言

在物联网和5G通信的愿景驱动下,近年来,移动计算发生了从集中式移动云计算移动边缘计算(MEC)的转变。 MEC的主要功能是将移动计算,网络控制和存储推向网络边缘(例如,基站和接入点),以便在资源受限的移动设备上启用计算密集型和延迟关键型应用程序。 MEC将显着减少延迟和移动能源消耗,应对实现5G愿景的关键挑战。 MEC的成果已激发了学术界和工业界在开发该技术方面的广泛努力。 MEC研究的主要目的是无缝融合无线通信移动计算这两个学科,从而产生了各种各样的新设计,从计算分流技术到网络体系结构。本文提供了对最新的MEC研究的全面概述,重点是联合无线电和计算资源管理。

二、简介

传统的云计算是集中式的,也就是将数据,算力都集中在一起,从而为终端的用户提供服务。但是据估计,在不久的将来,数以百亿计的边缘设备将被部署,它们的处理器速度将按照摩尔定律呈指数增长。获取分布在网络边缘的大量空闲计算能力和存储空间,可以为移动设备执行计算密集型和延迟关键型任务提供足够的能力。这种模式被称为移动边缘计算(MEC),也就是拜托了传统的集中式方式,反而将计算转移到边缘设备上。长时间的传播延迟是云计算的一个关键问题,相反,具有近距离访问特性的MEC被广泛认为是实现下一代Internet各种愿景的关键技术。

1:5G技术包含的移动计算

同样移动云计算本来是发展的方向,用户远程利用云端的资源进行运算,但是远距离传输延迟是硬伤。对响应时间要求很高的应用显然不合适。在5G无线系统中,包括小细胞基站(BSs)、无线接入点(APs)、笔记本电脑、平板电脑和智能手机在内的超高密度边缘设备将被部署。每台计算机的计算能力可与十年前的计算机服务器相媲美。因此,大量的设备将在任何时候都处于空闲状态。也就是说我们能从网络边缘获取大量的计算和静态资源,这将足以支持无处不在的移动计算。无线系统的主要目标,从1G到4G。是对越来越高的无线速度的追求,以支持从以语音为中心的流量到以多媒体为中心的流量的转换。随着无线速度越来越接近有线计数器部分,5G的任务变得不同,也更加复杂,即支持ICT和互联网的爆炸性发展。在功能方面,5G系统将支持通信、计算、控制和内容交付(4C)。在应用方面,5G的大量新应用和服务正在涌现,比如实时在线游戏、VR等各种东西。现在普遍认为,仅仅通过云计算是不足以支持5G所要求的毫秒级延迟的。而移动边缘计算将计算,存储都推到网络边缘,十分符合下一代物联网的特征:“信息局部产生并局部处理”。

移动边缘计算的定义来源于,用基站分流移动设备的计算任务(为移动设备完成一部分计算)。Cisco再MEC的基础上,提出了Fog Computing的概念,将终端设备扩展从单纯的手机,笔记本扩展到了机顶盒这种设备。当然二者的思想很类似,基本上属于重合的领域。

2:移动边缘计算与移动云计算比较

MEC和MCC系统在计算服务器、到最终用户的距离和典型的延迟等方面存在显著差异。与MCC相比,MEC具有实现较低延迟、为移动设备节省能源、支持上下文感知计算、增强移动应用程序的隐私和安全性等优点。

  • 低延迟:延迟分为三部分,传播延时,计算延时,通信延时。(i)终端设备与边缘计算节点的距离一般不超过1km,而和中心节点的距离可能超过几百公里。(ii)不仅是距离的问题,如果你的数据要发往某地,途径多个网络,网络的流量限制,拥塞程度都将会大大影响数据的传输速率和准确率。(iii)虽然集中式的云端具有超强的计算资源,但是他要把计算结果传回超多的终端应用,而边缘节点虽然算力不多,但是服务的应用也不多,而且下载算力提升很快,基本上够绝大部分5G应用。
  • 能量节省:一个传感器就指甲那么大,构成了物联网的基石,他们的电量很少,而且大部分不能充电,还要承担比较多样的计算任务,此时如果我们将传感器的计算任务转移到边缘节点上,传感器只负责进行感知,那么就会大大延长它的寿命。
  • 上下文感知计算:上文说了,终端和边缘节点之间的距离很近,传输很快,因此可以做很多实时的感知任务。比如再博物馆中根据用户的位置预测他们的兴趣。
  • 隐私保护:云计算的数据都在一起,价值很高,很多人都想要去攻击他。但是边缘计算的数据分布十分松散,一个边缘节点存储不了多少数据,攻击它的意义不大。

三、MEC计算和通信模型

难就难在如何将各种功能和操作抽象为优化问题。
在这里插入图片描述
对于上图所示的MEC系统,关键组件包括移动设备(又称终端用户、客户端、服务sub scribers)和MEC服务器。MEC服务器通常是由云和电信运营商部署的小型数据中心,与终端用户距离很近,可以与无线APs一起使用。通过网关,服务器通过Internet连接到数据中心。移动设备和服务器由空中接口分隔,利用先进的无线通信和网络技术可以建立可靠的无线连接。

1:Computation Task Models

在计算任务的建模过程中,有许多重要的参数,包括延迟、带宽利用率、上下文感知、通用性和可伸缩性。虽然为任务开发精确的模型是非常复杂的,但也有一些简单的模型是合理的,下文将会介绍

(1)Task Model for Binary Offloading:

一个简单的任务不能被分割,要么在本地计算,要么传送给边缘节点帮你计算,只有两个选择。这种情况下的模型通常是这样的:
A ( L , τ d , X ) A(L,\tau_d,X) A(L,τd,X)
L L L:任务数据量,单位bit, τ d \tau_d τd:任务的ddl,单位秒, X X X:计算强度(CPU周期数/bit)。这三个参数的使用不仅捕获了计算,通信要求,也简化了对执行延迟和能量消耗表现的评估。

(2)Task Models for Partial Offloading:

一部分在终端计算,一部分在边缘节点计算。最简单的就是数据二进制,你随便分。然而数据之间往往不是独立的,有些任务的执行顺序必须按照要求,有些任务必须在本地(比如图像显示)。这就要求我们的任务分配能考虑数据内在的联系,其中一种是任务调用图,将任务作为节点,任务之间的关系作为边,就可以建模任务在完成顺序以及完成位置的要求。
在这里插入图片描述

2:Communication Models

对于集中式的云计算系统,着重于处理大规模的数据处理与核心网络的延迟,而不是无限传感的延时,因此他们经常假设无线传输像一个管道一样,速率恒定。MEC不一样,边缘节点本身的数据范围就不大,而且要满足一些对传输时间严格要求的应用,所以我们必须使用更接近现实的模型,精确化信息传输的延时。先来看一看无线信道和有限信道的差距

  • 现实环境的物体会影响无线传输的质量,包括悬浮物/建筑物等等。
  • 信号的互相干扰很难避免,无线传输最常用的就是广播,如果占用了同一频谱,信号就会冲突。干扰管理是无线传输很重要的一部分。
  • 频谱资源短缺。

无线传输环境动态变化,有时候信号很差,我们将数据分流给边缘节点的传输率很低,还不如自己算,当然也可以增大发送频率,但这样同时也会增大能量消耗,如何在二者之间取得一个折中也是一个值得研究的问题。

3:Computation Models of Mobile Devices

在这里看看如何对移动设备进行建模

计算延迟定义如下:
t m = L X f m t_m=\frac{LX}{f_m} tm=fmLX
L , X L,X L,X都是上文说过的, L L L:任务数据量,单位bit, X X X:计算强度(CPU周期数/bit), f m f_m fm是该移动设备的主频。主频越高,计算越快。

能量消耗定义如下:
E m = κ L X f m 2 E_m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值