1.Lagrange对偶函数
[1]Lagrange函数、对偶函数、最优值的下界
原问题:
原问题并没有假设是一个凸优化问题
Lagrange函数:
对偶函数:
这里注意x的在定义域里取
对偶函数的一个重要性质,
我们首先由在R^n空间中的原问题的目标函数、等式约束、不等约束构造了一个在R^n*R^m*R^p空间中的Lagrange函数,再由Lagrange函数构造出了在R^m*R^p空间中的对偶函数。由对偶函数的性质,对偶函数值一定小于原问题的最优值,于是将原优化问题转变为先优化对偶问题,再根据参数x,得到原问题最优解。
[2]通过线性逼近来理解Lagrange函数
[3]几个算对偶函数的例子
(1)线性方程组的最小二乘解
(2)标准形式的线性规划
(3)双向划分问题
[4]Lagrange对偶函数和共轭函数
下面三个例子是上面这个例子的特例,
(1)
(2)
(3)
一般损失函数的定义是第1,2个例子,第三个例子是一个几何问题。
-------------------------------------------------------------------------------------------------------
2.Lagrange对偶问题
[1]对偶问题
对偶函数给了原问题最优值一个下界,我们自然是想得到最好的下界,也就是最贴近原问题最优值的下界,即对偶函数的最大值。从原问题到对偶问题,绕这个弯子的原因是原问题关于x的函数很难求解或因不是凸函数易于陷进局部最优,但对偶问题却一定是一个凸优化问题,易于求解不会陷于局部最优,缺点是对偶问题只是提供一个下界,可能和原问题最优值由一定距离,这可能背离我们的初衷。
对偶问题表述:
[2]弱对偶性和强对偶性
强弱对偶性讨论是对偶问题最优值和原问题最优值的关系。
(1)定义
(2)如果原问题很难求解,那么我们根据弱对偶性总成立,不求原问题的最优值,而是求对偶问题,然后给出原问题最优值的一个下界。当然我们更希望强对偶性成立,这样两个问题的最优值就相等,我们就可以放心地求相对简单的对偶问题的最优值即可。下面就是强对偶性成立的条件。
原问题为凸问题时,
原问题为凸问题时的例子
原问题不为凸问题时强对偶性也可能成立,
实际上如果Slater条件成立,对于具有二次目标函数和一个二次不等约束的优化问题,强对偶性总成立。(具体看附录B.1)
-----------------------------------------------------------------------------------------------------------
3.几何解释
这里通过函数值集合来理解强弱对偶性。看起来有泛函的感觉。
[1]基本设定
分析
图1
图2
[2]强对偶性对大部分凸问题成立
[3]在Slater准则保证强对偶性成立
--------------------------------------------------------------------------------------------------------
4.鞍点解释
这里用鞍点来理解强弱对偶性。
[1]Lagrange函数的鞍点
[2]极大极小不等式
----------------------------------------------------------------------------------------------------------
5.最优性条件
[1]次优解认证和终止准则
[2]互补松弛性
[3]KKT条件
[4]通过解对偶问题来解原问题
强对偶性成立时,Lagrange函数的鞍点,是原问题的最优解也是对偶问题的最优解。于是我们可以先求相对简单的对偶问题的最优解,再求Lagrange函数的鞍点,于是得到原问题最优解。以下是一个例子,
----------------------------------------------------------------------------------------------------------
6.扰动及灵敏度分析
[1]扰动的问题
[2]一个全局不等式
[3]局部灵敏度分析
--------------------------------------------------------------------------------------------------------
7.例子
--------------------------------------------------------------------------------------------------------
8.择一定理
择一定理用来讨论原问题中不等约束和等式约束的可行性,即可行集中是否有点。
[1]弱择一
[2]强择一
两个不等式系统中恰有一个系统可行,称为强择一的。即必有一个成立,且其中一个成立,则另一个不成立。
------------------------------------------------------------------------------------------------------------------
9.广义不等式