- 博客(13)
- 资源 (1)
- 收藏
- 关注
原创 《opencv》边缘检测、轮廓检测、图像分割
边缘edge检测、轮廓contours检测、图像分割(背景提取)这三个概念在我看来有些不好理解,因为边缘检测感觉就是检测轮廓的边缘啊,检测出来边缘不就检测出来轮廓了么。另外图像分割是前景与背景之间的分割,那不也就是轮廓的检测,所有的轮廓之外不就是背景了么。最近把这三个概念集中在一起看了看,总结一下。
2023-02-06 14:54:25 1641
原创 《opencv》图像连接(vconcat)、大小变换(resize)、翻转(flip)、仿射和透射变换
本文介绍了使用opencv做图像形态上的五种变换及其函数。
2023-02-05 11:39:11 456
原创 车辆计数-OPENCV项目(C++)含原视频
其它都没啥问题,关键卡在了一步往vector里push_back点,但是我逐步运行编译发现这个vector一直是0维度的,我怀疑了各种问题,是不是子函数写错了返回不了数据,还是声明变量、调用变量的方式出现错误。有个很著名的“车辆计数”项目,原版应该是慕课上的项目,然后B站有挪用的视频,CSDN上也有原版代码。花了好久我才发现,轮廓的维度也是0啊,但轮廓那一块我不可能写错的,最后我意识到,那是因为这个循环只看到了第一帧,我要是跳到后面几帧才会发现轮廓和vector维度不在是0了。
2023-01-15 21:30:09 435
原创 《模拟电子技术》(第五版)课后习题粗讲——第一章
在这里我不想一点点扣每一道题,因为写多了你们看着也蛮累的,最好还是我给你说个思路,我感性的认识,你再台下再慢慢的扣那些难题。书拿在手边,我就不把题目写进去了,用的课本肯定是清华出版的第五版。1.1(1)掺入5价的磷原子(最外层有5个自由电子)代替硅原子,其中4个电子与周围的硅原子形成共价键,多出来一个电子很容易被激发;所以形成了N(negitive)型半导体。反之掺入3价硼就是P(positive)型半导体。(2)反向饱和电流是少子的运动,少子受温度影响大(因为少子浓度全取决于本征激发),所以温.
2022-03-17 19:21:50 1004
原创 放大电路为什么要保证“发射结正偏,集电结反偏”?集电极和发射极电流等比例变化(放大)的本质原因是什么?
放大电路为什么要发射结正偏,集电结反偏?我不学课本那样,先一个个跟你讲每一条电流是怎么来的,每一极的电流又等于什么+什么。咱先来感性认识(不讲公式),等你懂了之后咱再来理性分析。感性认识这张共射放大电路图三极管工作在放大状态一定要发射结正偏,集电结反偏,而且是无论共射还是共基共集放大电路,也无论是PNP还是NPN晶体管,都要满足发射结正偏,集电结反偏。为什么要这样加电压?因为这样加电压才能使三极管导通为什么这样加电压能使三极管导通?这样1.使得高掺杂的发射结的电子涌向基
2021-11-23 22:27:10 20016 12
原创 凸优化——详解对偶和鞍点
强对偶原问题的最优解(最小解)p∗p^*p∗一定是大于等于其对偶问题的最优解(最大值)d∗d^*d∗的:p∗>=d∗p^*>=d^*p∗>=d∗这是对偶问题最重要的一条性质弱对偶满足p∗>=d∗p^*>=d^*p∗>=d∗,这就是弱对偶性,无论原函数是不是凸的,只要有解就一定满足前述不等式,也就是说一定都是弱对偶的。强对偶如果一个问题p∗=d∗p^*=d^*p∗=d∗,那原问题和对偶问题就是强对偶的。也就是最优对偶间隙p∗−d∗p^*-d^*p∗−d∗为0
2021-07-15 21:30:56 1851
原创 latex数学公式编辑——代码大全(图片)
最近我经常需要编辑公式,在overleaf编辑,找不到代码大全;在CSDN找的那个链接也打不开了,我干脆找这个在xmind上发现的网页截屏都发给大家了。收藏下来能用一辈子,欢迎点赞
2020-11-23 15:56:22 9813
原创 凸优化——详解原函数的对偶函数、对偶问题和共轭函数之间的关系(我尽力了)
一、 原函数的对偶函数和共轭函数对偶函数原函数 ==> 拉格朗日函数 ==> 对偶函数(拉格朗日对偶函数)f0f_0f0 ==>L(x,λ\lambdaλ,v) ==>D(λ\lambdaλ,v)这里就不具体写形式了,一定要搞清楚各个函数的变量是哪些共轭函数/函数的共轭我一下午花了很多很多时间看勒让德变换,终于搞懂共轭函数是啥了!B站此小姐姐的数学实在太好了维基-勒让德变换f∗(y)=sup(yTx−f(x))f^*(y)=sup(y^Tx-f
2020-11-21 18:48:37 8103 3
原创 使用eval函数将超大矩阵的列向量赋值到多个变量中
matlab>eval函数的应用之一CSDN有很多介绍eval函数使用的文章但我觉得这位https://blog.csdn.net/dujiahei/article/details/80961529写得最容易懂,只需要三行代码能免去很多重复的工作。clearclc%要创造多个变量分别保存矩阵的每一列数据A=[1:6;1:6;1:6];%一般方法我们要做的是:%a1=A(:,1);%a2=A(:,2);%...%然而如果矩阵列数实在太多,我们很难一一赋值%这就有了eval函数
2020-08-08 15:55:04 659
通信系统中的非凸优化(普林斯顿大学) .pdf
2020-11-21
Qt 6.4.2配置opencv,在编译环节出现问题
2023-02-04
TA创建的收藏夹 TA关注的收藏夹
TA关注的人