Langchain-Chatchat3.1版本docker部署流程——知识库问答

Langchain——chatchat3.1版本docker部署流程Langchain-Chatchat

1. 项目地址

#项目地址
https://github.com/chatchat-space/Langchain-Chatchat
#dockerhub地址
https://hub.docker.com/r/chatimage/chatchat/tags

2. docker部署

  • 参考官方文档
#官方文档
https://github.com/chatchat-space/Langchain-Chatchat/blob/master/docs/install/README_docker.md
  • 配置docker-compose环境
cd ~
wget https://github.com/docker/compose/releases/download/v2.27.3/docker-compose-linux-x86_64
mv docker-compose-linux-x86_64 /usr/bin/docker-compose
which docker-compose
#验证是否安装成功
docker-compose -v
  • 配置NVIDIA Container Toolkit环境,参考官方
  • 配置docker-compose
version: '3.9'
services:
  xinference:
    #xprobe/xinference:latest
    image: xinferebce:1.0
    restart: always
    command: xinference-local -H 0.0.0.0
    ports: # 不使用 host network 时可打开.
     - "9997:9997"
    # network_mode: "host"
    # 将本地路径(~/xinference)挂载到容器路径(/root/.xinference)中,
    # 详情见: https://inference.readthedocs.io/zh-cn/latest/getting_started/using_docker_image.html
    volumes:
      - /home/isi/LLM/models/xinference:/root/.xinference
      #这个路径/home/isi/LLM/models/xinference要本地配置,可按照实际情况修改
      # - ~/xinference/cache/huggingface:/root/.cache/huggingface
      # - ~/xinference/cache/modelscope:/root/.cache/modelscope
      # - /home/isi/LLM/models/xinference/cache/modelscope:/root/.cache/modelscope
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]
    runtime: nvidia
    # 模型源更改为 ModelScope, 默认为 HuggingFace
    environment:
      - XINFERENCE_MODEL_SRC=modelscope
  chatchat:
    # 版本参考https://hub.docker.com/r/chatimage/chatchat/tags
    # docker pull chatimage/chatchat:0.3.1.1-2024-0714
    image: chatchat:1.0
    restart: always
    ports: # 不使用 host network 时可打开.
      - "7861:7861"
      - "8501:8501"
    # network_mode: "host"
    # 将本地路径(~/chatchat/data)挂载到容器默认数据路径(/usr/local/lib/python3.11/site-packages/chatchat/data)中
    volumes:
      - /home/isi/chatchat/data:/root/chatchat_data/data
  • 启动容器
docker-compose up -d

xinference

#1. 访问http://IP:9997/
#2. 加载Langguage models——glm4
#3. 加载embedding models——bge-large-zh-v1.5

在这里插入图片描述

在这里插入图片描述

  • 模型加载成功

    在这里插入图片描述

    在这里插入图片描述

chatchat

docker exec -it chat容器id bash

vi /root/chatchat_data/model_settings.yaml
#1.将embedding改成下面的bge-large-zh-V1.5
#2.将下面内容改成服务器自身的ip地址,不能改成127.0.0.1,因为127.0.0.1在ip映射的模式下不适用

在这里插入图片描述

在这里插入图片描述

知识库部署成功

访问http://IP:8501/ 走以下知识库创建的流程

在这里插入图片描述

以及知识库问答的流程

在这里插入图片描述

### 如何使用Docker部署Langchain-Chatchat 为了成功部署Langchain-Chatchat应用,需遵循一系列操作指南来确保环境配置无误。 #### 准备工作 确认本地已安装Docker以及docker-compose工具。这二者对于构建和运行容器化应用程序至关重要[^1]。 #### 获取项目源码 通过Git或其他版本控制系统克隆Langchain-Chatchat项目的官方仓库至本地机器上。通常情况下,GitHub链接会在文档首页提供给开发者访问下载。 #### 修改`docker-compose.yml` 检查并调整位于项目根目录下的`docker-compose.yml`文件中的服务定义部分。如果遇到含有`deploy`关键字的服务设置而并非处于Swarm模式下,则应考虑添加`--compatibility`选项以兼容旧版特性[^2]。 ```yaml version: '3' services: langchain-chatchat-xinference-1: image: your_image_name_here container_name: langchain-chatchat-xinference-1 ports: - "8080:80" ``` 注意上述仅为示例片段,在实际环境中还需依据具体需求定制端口映射等参数。 #### 构建与启动服务 执行命令`docker-compose --compatibility up -d`用于拉取镜像、创建网络及卷,并以前台守护进程方式启动所有关联的服务实例。此过程中可能会有短暂延迟取决于互联网连接速度等因素影响。 #### 查看日志输出 一旦完成初始化过程后,可以通过输入`docker logs -f langchain-chatchat-xinference-1`实时跟踪指定容器的日志流以便监控其状态变化或排查潜在错误信息。 #### 验证部署成果 最后一步便是验证整个系统的正常运作情况。打开浏览器窗口导航到http://localhost:8080(假设前端界面监听于该地址),按照预期显示即代表部署顺利完成!
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值