1.题目描述
根据 逆波兰表示法,求该后缀表达式的计算结果。
有效的算符包括 +、-、*、/ 。每个运算对象可以是整数,也可以是另一个逆波兰表达式。
说明:
整数除法只保留整数部分。
给定逆波兰表达式总是有效的。换句话说,表达式总会得出有效数值且不存在除数为 0 的情况。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:
该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
2.解题思路与代码
2.1 解题思路
这道题目就是计算逆波兰表达式的结果,那么我们就可以用一个栈来进行解答。我们遍历整个字符串数组,如果遇到数字就把数字直接入栈,如果遇到运算符号,就让从栈中弹出两个数字先先弹出的是 num1,后弹出的是 num2,然后根据运算符计算 num1 和 num2 的结果,注意除法需要用 num2 /num1。得到计算结果 ans,再将 ans 压入栈中。重复上面操作直到数组遍历完成,最后返回栈顶元素即可。以示例 tokens = [“2”,“1”,“+”,“3”,“*”] 为例,首先将 2 和 1 入栈
然后继续遍历遇到符号 “+”,则从栈中弹出 1 和 2 计算两个数字的和 3,将计算结果 3 入栈
继续遍历遇到直到最后一位遇到 * 号再次弹出两个栈顶元素 3 和 3,计算乘积得到 9 入栈
最后当我们遍历完数组之后返回栈顶元素 9 便是最后的计算结果
2.2 代码
class Solution {
public int evalRPN(String[] tokens) {
int[] stack = new int[tokens.length];
int index = -1;
for (String token : tokens) {
if ("+".equals(token) || "-".equals(token) || "*".equals(token) || "/".equals(token)) {
int num1 =stack[index--];
int num2 =stack[index--];
int ans = 0;
switch (token) {
case "+":
ans = num2 + num1;
break;
case "-":
ans = num2 - num1;
break;
case "*":
ans = num2 * num1;
break;
default:
ans = num2 / num1;
}
stack[++index] = ans;
} else {
stack[++index] = Integer.parseInt(token);
}
}
return stack[index];
}
}
2.3 测试结果
通过测试
3.总结
- 使用栈解答,遇到数字入栈、遇到符号弹出两个栈顶元素,再将计算结果压入栈中