自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(70)
  • 资源 (1)
  • 收藏
  • 关注

原创 vscode 删除不用的ssh远程连接

使用vscode连接一个远程服务器发现联不通,但是使用mobaxterm是可以通的,最后原因发现是这个服务器ip与之前连过的另一台相同,和之前连接保存的信息冲突了。

2024-06-24 10:42:15 1207

原创 瑞芯微MPP编译后执行测试程序出:undefined symbol:mpp_buffer_sync_begin_f错误

相关的so文件与编译的mpp so文件版本不同,因此出现错误。经过好几天的调试测试,编译了很多次终于找到了原因所在。**解决:**用自行编译好的so文件替换掉。:rk3588上编译MPP后执行测试程序。:系统读取的lib文件路径是。

2024-03-04 11:08:42 565

原创 代码使用opencv编译出现错误:undefined reference to `cv::String::deallocate()

在CMakeLists.txt文件从链接库中没有添加opencv相关的库。等相关链接库,重新编译通过。

2023-11-13 10:54:25 942

原创 KFold.split的使用

因为设置的K为5,所以输出共有5部分,每部分由(训练数据索引,验证数据索引)组成。要实现K折交叉验证法有一个很方便的工具:KFold.split。

2023-07-14 09:06:07 847

原创 局域网内windows通过网线直连ping不通解决

如果上述都没有问题但还是ping不通那大概率就是防火墙的问题,可以尝试关闭防火墙试试能否ping通,关闭后能ping通的话那就是防火墙的设置问题。ping不通时首先需要检查两个电脑的ip设置,网线连接没有问题。(回显请求-ICMPv4-In)即可。

2023-07-03 09:24:43 3605

原创 Ubuntu20.04 + 3090 安装nvidia驱动,附加解决重启黑屏卡在 /dev/***: clean, **files,***blocks的问题

如果没有配置ssh的话按照下面几步走(配置好ssh的话直接跳到第6步,在另一台电脑上操作)查看当前设备所支持的驱动,带有recommended的驱动为推荐安装的版本。nouveau是一个临时的驱动,要安装英伟达驱动首先需要把这个禁用了。首先需要知道当前电脑/服务器的显卡型号,这个自行查找自己电脑配置。的黑屏界面 (如果能正常进入系统的话那没事了,这一步直接跳过)下载对应的驱动并保存到本地,一定要记住保存的路径。上面重启后不出意外应该会卡在 一个。检查是否能够识别当前显卡。查找显卡对应的驱动版本。

2023-06-13 15:15:38 5153

原创 Cmake + C++ 项目 引入动态链接库或切换库版本失败原因

环境变量,程序运行时会在此环境变量指定的文件夹下寻找动态链接库。,如果想要让正常运行,就需要就将对应的动态链接库文件放到。name是可执行文件的名字。(linux系统)下找。所以执行时程序还是会在。

2023-05-17 14:15:41 459

原创 C++ OpenCV读取mipi摄像头图像数据

也可以预先测试gstreamer和摄像头是否正常运行,不过在代码中需要使用cpp代码中给出的形式。其中摄像头的参数需要自己根据摄像头参数修改(设备信息中看到的format等等)输出OpenCV信息查看是否支持Gstreamer。环境:Linux + OpenCV。普通读取视频文件的OpenCV代码。

2023-05-16 18:09:41 2125 3

原创 VScode+cmake调试c++记录

1、在VScode中Ctrl+shift+P打开搜索,输入cmake搜索并点击 select a kit,在下拉选项中选择GCC,有多个GCC版本时按照自己情况选。所需文件:代码文件,以及CMakeLists.txt,确保能够在终端中使用make命令可以正常编译运行。修改自动生成的launch文件,可以参考我的进行改,有注释的都是需要注意或者改动的地方。2、点击界面左侧的调试与运行,再点击设置那个图标,打开launch.json配置文件。问题1:设置断点后,开始调试断点会变为空心断点,程序在断点不停止。

2023-05-16 15:32:33 909 1

原创 CMakeLists.txt书写规则记录

本文只记录了最基础的所需项,有了这些一般简单的项目都能够正常编译运行了,CMakeLists.txt当然还有更多更灵活高级的写法和东西,例如install之类的,根据项目需求自行添加,后续学习到了再进行记录。通常一个项目会有很多个cpp文件,或者多个文件夹,每个文件夹下有多个文件便于代码管理,这时候总不能去手敲每个文件的路径到。(网上很多教程就只拿只有一个main.cpp的举例,你家项目只有一个main文件啊?当项目下有要使用的库时,这里以linux下的opencv动态链接库文件举例。

2023-05-10 17:31:41 978

原创 maskrcnn_benchmark使用过程 错误记录

mask rcnn benchmark 错误记录

2022-11-14 15:29:19 535

原创 对vector元素取址 时出现的问题

在对数组元素取址时的一些问题

2022-08-12 11:23:54 696

原创 Git 学习笔记

Git使用学习笔记

2022-07-27 10:38:02 244

原创 C++学习笔记 之 lower_bound & upper_bound

用于查找有序序列中目标值的上下界使用时需要包含头文件 #include <algorithm>内部实现是二分查找,时间复杂度为O(logn)O(logn)O(logn)lower_bound : 返回序列中第一个大于等于value的元素的位置,没有的话返回last位置(不是最后一个元素,此时返回值是越界的) lower_bound(start,end,value); //使用方式与upper_bound相同 👇upper_bound : 返回序列中第一个大于value的

2022-05-30 17:05:46 625

原创 Pytorch学习笔记 之 主体训练流程

数据读取部分pytorch官方文档链接 :这里Dataset数据类,需要自己实现,后续需要传入torch.utils.data.DataLoader中需要自己实现对数据的读取类myDataset,myDataset需要继承torch.utils.data.Dataset在myDataset中需要:重写__getitem__()方法,该函数声明形式为:def __getitem__(self,idx):,内部需要自行实现根据索引获取一个对应的数据输入:idx : 索引输出:索引对应的数据

2022-05-17 21:08:41 455

原创 C++学习笔记 之 常量指针与指针常量

① 指针常量形式: int * const pt;特点:防止通过该指针修改指向的值, 指针的指向可以改Int age = 23;Const int * pt = &age; // 表明 *pt 的值不能被修改,或者说23 不能通过pt修改,但是可以通过age修改, const只是针对于pt② 常量指针形式: const int * ps;特点:将指针本身声明为常量,即固定指针指向的位置不可改变此时可以使用ps修改指向的值,但是不能修改ps指向的地址...

2021-12-23 22:10:27 550 1

原创 C++学习笔记 之 数组使用注意事项(持续补充ing)

我是目录① 在不知道数组长度时,想要声明数组② 数组名相当于指针常量(即 type * const)③ 数据名在作为函数的参数时将失去其数据结构内涵① 在不知道数组长度时,想要声明数组(例如想要通过外部输入设定数组长度),此时需要通过指针来进行。即声明一个指向数组元素类型的指针,然后后续通过new来分配地址赋值给该指针。class myClass{ int *p; void setLength(int n) { p = new int [n]; }}方法特点:此时还是能够通过 p

2021-12-23 22:05:04 930

原创 目标检测数据集格式转换 : COCO、VOC、YOLO互相转换

目标检测数据集格式转换:VOC,COCO,YOLO互相转换

2021-12-22 16:32:47 8294 21

原创 场景图生成论文阅读笔记 之 Visual Relation Detection with Multi-Level Atention

Visual Relation Detection with Multi-Level Atention2019 ACM MMVisual Relation Detection with Multi-Level Atention2019 ACM MM针对问题大多数工作直接使用Union Box区域作为谓词的视觉特征,这样会1)引入无关的背景信息。2)忽视了目标周围的上下文信息因为视觉特征、位置信息、语义信息(类别)都对关系的预测有贡献,大多数工作直接将三个线索直接拼接在一起,但是不同场景下不同线

2021-11-02 15:52:45 314

原创 场景图生成论文阅读笔记 之 Attention-Translation-Relation Network for Scalable Scene Graph Generation

Attention-Translation-Relation Network for Scalable Scene Graph Generation2019 ICCVcode: https://github.com/deeplab-ai/atr-net我是目录Attention-Translation-Relation Network for Scalable Scene Graph Generation针对问题算法内容具体结构损失函数总结针对问题很多工作使用通用的注意机制和数据集的统计特性来取代

2021-10-10 17:01:26 390

原创 场景图生成论文阅读笔记 之 AVR:Attention based Salient Visual Relationship Detection

AVR:Attention based Salient Visual Relationship DetectionarXiv2020我是目录????针对问题算法思想算法内容Predicate Prediction ModuleAttention Module利用数据集先验知识部分针对问题以前的工作都对一幅图像中所有可见的关系都一视同仁,而一些不重要的关系会对结果在一定程度上造成影响,因此需要筛选出更显著(salient)的关系对。算法思想结合视觉特征、语义信息(类别标签)、空间信息(位置)预测关

2021-09-28 16:47:12 528 1

原创 Ubuntu查看磁盘以及文件占用内存等命令

1、查看分区fdisk -l2、 查看各磁盘内存情况df -h3、查看某一目录的内存占用du -sh 文件名或在要查看的目录下 du -sh4、查看某一目录下所有文件夹的内存占用进入到该目录下sudo du -sh ./* --exclude proc5、conda 清除没用的安装包命令conda clean -a...

2021-09-26 09:49:35 8925

原创 场景图生成论文阅读笔记 之 PCPL

PCPL(predicate-correlation perception learning scheme)阅读笔记(谓词联系感知学习策略)目录针对问题论文流程实验结果针对问题VG数据集长久以来的难题:谓词类的长尾效应过于严重导致结果很容易预测为头部类,并且谓词类之间并不是相互独立的,在很多场景下会是包含等等的关系,因此可以利用谓词与谓词之间的关联信息。作者提到:当前比较普遍的重调节策略(re-banlance strategy, 例如重采样,调节权重等) 会导致模型在尾部数据过拟合。作者认为这是

2021-09-23 17:15:10 710

原创 场景图生成论文阅读笔记 之 CogTree: Cognition Tree Loss for Unbiased Scene Graph Generation

2020 arXiv《CogTree: Cognition Tree Loss for Unbiased Scene Graph Generation》无偏场景图生成的认知树损失文章目录《CogTree: Cognition Tree Loss for Unbiased Scene Graph Generation》针对问题/基本思想算法步骤① Bias-based ‘Concept’② 构建Concept-centered子树③ 组合子树Cognition Tree Loss实验结果针对问题/基

2021-07-25 16:36:34 931

原创 使用mmdetection过程中出现的一个bug

这两天发现mmdetection 有个bug:configs文件中 如果 A.py中定义了 data = dict(…)当B.py在A.py基础上改动时,如果想要添加额外的数据集或者改变数据集,此时在B中再重写 data=dict(…)时会出现下面的错误:ValueError: Expected x_max for bbox (0.27575300216674803, 0.42447948455810547, 1.109375991821289, 1.1493060302734375, 0) to

2021-07-23 00:39:00 780

原创 场景图生成论文阅读笔记 之 Unbiased Scene Graph Generation from Biased Training

2020 CVPR oral《Unbiased Scene Graph Generation from Biased Training》作者博文:https://mp.weixin.qq.com/s/wLsVyyhP9jjBoj1FMgy3xg文章目录《Unbiased Scene Graph Generation from Biased Training》针对问题本文创新SGG算法结构实验结果实验细节针对问题由于VG数据的长尾效应,大部分SGG方法中网络更关注label信息,而没有很好的利用视觉

2021-07-22 16:58:17 975 5

原创 场景图生成论文阅读笔记 之 Graph R-CNN for Scene Graph Generation

2018 ECCV《Graph R-CNN for Scene Graph Generation》比较早使用图网络进行场景图生成的论文,对后续工作具有一定的启发性,在这做一记录文章目录《Graph R-CNN for Scene Graph Generation》针对问题文章创新点模型结构① Object Proposal② Relation Proposal Network③ Attentional GCN实验结果针对问题很多工作中预测关系时都是密集关系的方式(目标与其它每个目标之间都存在关系)

2021-07-19 16:49:13 1436

原创 场景图生成论文阅读笔记 之 PANet:A Context Based Predicate Association Network for Scene Graph Generation

2019 ICME《PANet: A Context Based Predicate Association Network for Scene Graph Generation》文章目录《PANet: A Context Based Predicate Association Network for Scene Graph Generation》针对问题本文创新网络结构谓词预测(关系预测)实验结果针对问题以前的工作(IMP、MotifNet等等)利用了上下文信息,空间位置信息(LinkNet等),

2021-07-14 20:53:46 454

原创 场景图生成论文阅读笔记 之 LinkNet: Relational Embedding for Scene Graph

NIPS 2018《LinkNet: Relational Embedding for Scene Graph》文章贡献:提出了基于CNN的LinkNet结构,在结构中引入了卷积自注意力机制,最终结果超越MotifsNet达到了当时的SOTA本文创新:① 引入了自注意力机制② 目标在作为主语和宾语时的特征是不同的(即提取目标特征过程中是受其它目标影响的)③ 和Motifs Net相似,分为多阶段进行,并利用了目标的类别标签信息④ 结合了目标的空间位置信息注:后两点严格来说不算是本文的创新

2021-07-13 16:38:02 657

原创 场景图生成论文阅读笔记 之 Detecting Visual Relationships with Deep Relational Networks

CVPR 2017《Detecting Visual Relationships with Deep Relational Networks》属于基于CNN实现的,并非后续主流的RNN、LSTM、图神经网络的方法,并且比较早,因此不作过详细记录,仅重点记录下创新点文章目录《Detecting Visual Relationships with Deep Relational Networks》针对问题本文创新点网络结构空间位置信息提取针对问题Local prediction,前人工作没有考虑到上下

2021-07-11 15:50:27 137

原创 场景图生成论文阅读笔记 之 Neural Motifs

CVPR2018《Neural Motifs: Scene Graph Parsing with Global Context》文章目录《Neural Motifs: Scene Graph Parsing with Global Context》针对问题问题分析Motifs概念文章创新网络模型实验结果针对问题① 很多前人的工作是local prediction,未利用上下文信息(这一点与IMP针对的问题相同)② 作者分析了VG数据集,发现具有很大的长尾效应(关系检测数据集的通病),并且很多关系类

2021-07-09 16:52:47 2130 5

原创 场景图生成论文阅读笔记 之 IMP(Scene Graph Generation by Iterative Message Passing)

IMP 2017CVPR《Scene Graph Generation by Iterative Message Passing》针对问题前人的工作大多是local prediction,未利用丰富的上下文信息,因此会造成关系类别预测出现模糊和歧义图的表示把node(目标)和各个node之间的edge(边)都视为节点,即node节点和edge节点,因为edge也需要具备状态和更新状态,所以把edge也视为节点。因此每个node节点直接相连的只有edge节点,反之同理,与edge节点直接相连的的只

2021-07-08 21:35:21 647 1

原创 coco格式数据集可视化 之 分割标签可视化

靠数据做事当然首先要知道数据是什么样的本文的可视化是基于pycocotools来实现的(有方便的轮子为什么不用),网上的大多数教程就是把pycocotools的demo拿来说了一下,而demo中标签的可视化都需要指定一个类,只显示这个类的标签,但我想可视化一张图片中所有目标的标签该怎么办。。。。一时半会在网上没找到想要的 ???? 自己写一个算了 ???? 所以有了本文默认已经安装了pycocotools直接上代码:下面的代码可以直接可视化 train的标签,其中’test‘模式是为了打比赛的时候

2021-06-08 17:06:15 2413 5

原创 mmdetection 使用 之 训练/测试 自己的数据集

目录一、修改配置文件二、训练/测试命令以及常用命令参数2.1 测试2.2 训练mmdetection的官方使用教程:https://github.com/open-mmlab/mmdetection/blob/master/README_zh-CN.md本文以coco格式数据集为例,其他的标准格式如VOC等过程也大体相同,至于非标准格式的数据集建议先转换格式。一、修改配置文件使用训练/检测自己的coco格式数据集时,配置文件的修改方式有两种: 1、修改各个原始配置文件的对应位置(比较麻烦);2

2021-05-21 20:15:37 5164 1

原创 mmdetection 安装 以及 测试记录

安装首先下载 mmdetection的包:官方的下载地址:git clone https://github.com/open-mmlab/mmdetection.git如果下载太慢了就从码云上下载能快一点:git https://gitee.com/hejuncheng1/mmdetection.git假定已经安装好最基础的CUDA,cudnn,pytorch,torchvision等等然后需要安装mmcv,可以直接pip install mmcv ,但是后面可能会出现No module

2021-05-19 21:21:02 781 3

原创 深度学习数据增强 之 CopyAndPasted

copy-pasted 数据增强是2019年论文《Augmentation for small object detection》提出的针对coco的数据集增强方式,主要是为了解决小目标数量过少的问题,顾名思义,把小目标复制然后再重新在图像的随机位置粘贴,以此来增加小目标在数据集中的数量。由于最近在一个比赛中目标全为小目标,因此自己动手实现了这个数据增强的简化版。代码如下,因为比赛中数据集中只有小目标,所以我无需区分大目标与小目标,因此这个和原论文的做法还是不同的;因此在代码中只是简单的将每一张图片中所

2021-05-12 21:29:05 1347 2

原创 C++ 调用python 之 错误以及解决方法

在C++项目中调用python时碰到了个特别坑(我的沙雕错误)的地方。在项目中调用python要用到 PyObject *pName = PyUnicode_DecodeFSDefault("detect_model"); PyObject *pModule = PyImport_Import(pName); /* 导入模块 */ if (pModule == NULL) { cout << "没找到" << endl; }来导入python模块文件,但是一直出

2021-04-12 14:47:31 2057 3

原创 C++调用python 之 环境配置(VS2015 + anaconda)

目录已有环境:VS配置python(Anaconda中的python)VS配置额外包(以numpy为例)项目中需要用到深度学习模型进行检测,但是项目是C++的,又不太可能用C++去实现深度学习模块,所以只能用C++去调用python了。C++与python的交互有很多种方式和工具,例如:直接调用python解释器,boost,pybind11等等。如果交互不是非常多的情况下直接调用python能够方便一点,其它两个我目前还不是很了解。所以本文的方法就是直接调用python解释器已有环境:Windo

2021-04-10 16:42:43 1761 1

原创 论文阅读笔记 之 GS3D

论文:GS3D An Efficient 3D Object Detection Framework for Autonomous DrivingGS3D 目录解决问题文章主要贡献问题定义总体流程具体内容一、2D边框检测与方向预测(2D+O subnet)二、Guidance生成2.1 Guidance尺寸估计2.2 Guidance 坐标估计2.3 Guidance 角度估计三、表面特征抽取四、Refine4.1 refine4.2 Quality Aware Loss五、实验结果解决问题① 经典的

2021-03-31 15:15:57 658

原创 VS2015 + CUDA10 编译 OpenCV2.4.13 之 OpenCV编译文件修改

总体参考https://blog.csdn.net/u014613745/article/details/78310916【第四步】在第四步修改架构的时候,需要根据自己的显卡架构以及算力修改例如 RTX2060s是基于Turing架构的,算力为7.5所以应该修改下面两处(前面的那个Kepler不用管,也可以自己添加其他架构和算力):第一处set(_generations "Fermi" "Kepler") 改为: set(_generations "Fermi" "Kepler" "

2021-03-28 21:16:21 290 1

darknet53_75.42.pth

darknet的官方预训练的pth文件, 从官网下载经常会出现因为下载速度太慢而出现requests.exceptions.ConnectionError: ('Connection aborted.', TimeoutError(10060, '由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。', None, 10060, None))这种错误,因此需要我们手动去下载 .pth 文件然后从本地加载。

2020-05-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除