删除二值图中的毛刺并提取骨架线

删除二值图中的毛刺

在不改变二值图中各个连通域的连通性的条件下,删除二值图中的毛刺,并提取骨架线

整体代码实现

//连通域分析
bool connectedanalysis(std::vector<int> vPixelVal)
{
	if (vPixelVal.size() != 9)
		return true;

	int  p1, p2, p3, p4, p5, p6, p7, p8, p9;
	p1 = vPixelVal[0];
	p2 = vPixelVal[1];
	p3 = vPixelVal[2];
	p4 = vPixelVal[3];
	p5 = vPixelVal[4];
	p6 = vPixelVal[5];
	p7 = vPixelVal[6];
	p8 = vPixelVal[7];
	p9 = vPixelVal[8];
				   
	//8 simple判定
	if (p2 == 0 && p6 == 0)
	{
		if ((p9 == 255 || p8 == 255 || p7 == 255) && (p3 == 255 || p4 == 255 || p5 == 255))
			return false;
	}
	if (p4 == 0 && p8 == 0)
	{
		if ((p9 == 255 || p2 == 255 || p3 == 255) && (p5 == 255 || p6 == 255 || p7 == 255))
			return false;
	}
	if (p8 == 0 && p2 == 0)
	{
		if (p9 == 255 && (p3 == 255 || p4 == 255 || p5 == 255 || p6 == 255 || p7 == 255))
			return false;
	}
	if (p4 == 0 && p2 == 0)
	{
		if (p3 == 255 && (p5 == 255 || p6 == 255 || p7 == 255 || p8 == 255 || p9 == 255))
			return false;
	}
	if (p8 == 0 && p6 == 0)
	{
		if (p7 == 255 && (p9 == 255 || p2 == 255 || p3 == 255 || p4 == 255 || p5 == 255))
			return false;
	}
	if (p4 == 0 && p6 == 0)
	{
		if (p5 == 255 && (p7 == 255 || p8 == 255 || p9 == 255 || p2 == 255 || p3 == 255))
			return false;
	}
	return true;
}

//去除二值图像边缘的突出部
//uthreshold、vthreshold分别表示突出部的宽度阈值和高度阈值
//type代表突出部的颜色,0表示黑色,1代表白色
void delete_jut(cv::Mat& src, cv::Mat& dst, int uthreshold, int vthreshold, int type)
{
	src.copyTo(dst);
	int height = dst.rows;
	int width = dst.cols;
	int k;  //用于循环计数传递到外部
	for (int i = 1; i < height - 1; i++)
	{
		if (i==338)
		{
			int a = 0;
		}
		uchar* p = dst.ptr<uchar>(i);
		for (int j = 1; j < width - 1; j++)
		{
			if (type == 0) //背景为白色
			{
				//行消除 
				if (p[j] == 255 && p[j + 1] == 0)
				{
					if (j + uthreshold >= width)
					{
						for (int k = j + 1; k < width; k++)
							p[k] = 255;
					}
					else
					{
						for (k = j + 2; k <= j + uthreshold; k++)
						{
							if (p[k] == 255) break;
						}
						if (p[k] == 255)
						{
							for (int h = j + 1; h < k; h++)
								p[h] = 255;
						}
					}
				}
				//列消除
				if (p[j] == 255 && p[j + width] == 0)
				{
					if (i + vthreshold >= height)
					{
						for (k = j + width; k < j + (height - i)*width; k += width)
							p[k] = 255;
					}
					else
					{
						for (k = j + 2 * width; k <= j + vthreshold * width; k += width)
						{
							if (p[k] == 255) break;
						}
						if (p[k] == 255)
						{
							for (int h = j + width; h < k; h += width)
								p[h] = 255;
						}
					}
				}
			}
			else  //背景为黑色
			{
				//行消除:当前为0后一个为255的情况下
				if (p[j] == 0 && p[j + 1] == 255)
				{
					if (j + uthreshold >= width) //超过最大宽度,直接置为0
					{
						continue;
						//for (int k = j + 1; k < width; k++)
						//{
						//	p[k] = 0;
						//}
					}
					else //255的个数小于uthreshold,全部置0
					{
						bool found = false;
						for (k = j + 1; k <= j + uthreshold; k++) 
						{
							//发现突刺,需要删除
							if (p[k] == 0)
							{
								found = true;
								break;
							}
						}
						if (found) //准备删除
						{
							for (int h = j + 1; h < k; h++)
							{
								std::vector<int> vPixelVal;
								vPixelVal.push_back(p[h]);
								vPixelVal.push_back(p[h - width]);
								vPixelVal.push_back(p[h - width + 1]);
								vPixelVal.push_back(p[h + 1]);
								vPixelVal.push_back(p[h + width + 1]);
								vPixelVal.push_back(p[h + width]);
								vPixelVal.push_back(p[h + width - 1]);
								vPixelVal.push_back(p[h - 1]);
								vPixelVal.push_back(p[h - width - 1]);
								bool IsDelete = connectedanalysis(vPixelVal);
								if (IsDelete) //可以删除,删除后不影响连通性
									p[h] = 0;
							}
						}
					}
				}
				//列消除:当前为0下一个为255的情况下
				if (p[j] == 0 && p[j + width] == 255)
				{
					if (i + vthreshold >= height) //超过最大高度,直接置为0
					{
						continue;
						//for (k = j + width; k < j + (height - i)*width; k += width)
						//	p[k] = 0;
					}
					else //255的个数小于vthreshold,全部置0
					{
						bool found = false;
						for (k = j + width; k <= j + vthreshold * width; k += width)
						{
							//发现突刺,需要删除
							if (p[k] == 0)
							{
								found = true;
								break;
							}
						}
						if (found) //准备删除
						{
							for (int h = j + width; h < k; h += width)
							{
								std::vector<int> vPixelVal;
								vPixelVal.push_back(p[h]);
								vPixelVal.push_back(p[h - width]);
								vPixelVal.push_back(p[h - width + 1]);
								vPixelVal.push_back(p[h + 1]);
								vPixelVal.push_back(p[h + width + 1]);
								vPixelVal.push_back(p[h + width]);
								vPixelVal.push_back(p[h + width - 1]);
								vPixelVal.push_back(p[h - 1]);
								vPixelVal.push_back(p[h - width - 1]);
								bool IsDelete = connectedanalysis(vPixelVal);
								if (IsDelete) //可以删除,删除后不影响连通性
									p[h] = 0;
							}
						}
					}
				}
			}
		}
	}
}

连通性保证

使用下面的八邻域表示法:
在这里插入图片描述
以8连通为例:就是我们把p1的值设置为0后,不会改变周围8个像素的8连通性。下面的三个图中,如果p1=0后,则会改变8连通性。
在这里插入图片描述
而下面的则不会改边8连通性,此时可以称像素p1是8 simple
在这里插入图片描述
具体判定方式见上述代码的connectedanalysis函数,如果判定为false,那么删除后就会影响连通性。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值