一、什么是二叉搜索树?
对于其每个结点K,其左子树都小于K的值,右子树都大于K的值
可以得出一个性质:
——如果一个二叉树的中序遍历是单调递增的,那么它就是二叉搜索树!
二、验证是否为二叉搜索树
(1)用递归法进行中序遍历,用Arrayist来判断是否递增:
class Solution {
public boolean isValidBST(TreeNode root) {
if(root == null) return true;
List<Integer> list = new ArrayList<>();
dfs(root,list);
int len = list.size();
for(int i=1;i<len;i++){//判断是否为递增
if(list.get(i)<=list.get(i-1)){//左节点值必须小于父节点值,不可以等于
return false;
}
}
return true;
}
//中序遍历
public void dfs(TreeNode root,List<Integer> list){
if(root == null) return;
dfs(root.left,list);
list.add(root.val);
dfs(root.right,list);
}
}
(2)中序遍历(非递归法),看它是不是单调递增的:
class Solution {
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> stack = new Stack<>();
//代表中序遍历输出的结点值,在第一个的前面,需要尽量小
double inorder = -Double.MAX_VALUE;
TreeNode cur = root;
while(cur != null || !stack.isEmpty()){
if(cur != null){
stack.push(cur);
cur = cur.left;
}else{
cur = stack.pop();//中序遍历得到的结点,从前往后
//inorder表示前一个中序遍历输出结点值,后面的必须比前面的大
if(cur.val <= inorder) return false;
inorder = cur.val;//用inorder表示当前中序遍历输出值
cur = cur.right;///若还未到达父结点,则curr.right=null,继续循环
}
}
return true;
}
}
三、二叉搜索树的查找
/* 查找以t为根节点的树中,是否包含x */
Position Find(int x, SearchTree t)
{
if (t == NULL) {
return NULL;
} else if (x < t.val) {
return Find(x, t.left);
} else if (x > t.val) {
return Find(x, t.right);
} else {
return t;
}
}
四、【二叉搜索树】就地转【单链表结构】
原题地址
二叉树数据结构TreeNode可用来表示单向链表(其中left置空,right为下一个链表节点)。实现一个方法,把二叉搜索树转换为单向链表,要求值的顺序保持不变,转换操作应是原址的,也就是在原始的二叉搜索树上直接修改。
返回转换后的单向链表的头节点。
class Solution {
TreeNode f = new TreeNode(-1);
public TreeNode convertBiNode(TreeNode root) {
TreeNode tmp = f;
dfs(root);
return tmp.right;
}
//中序遍历并原地修改原二叉树
public void dfs(TreeNode root){
if(root==null) return;
dfs(root.left);
f.right = root;
root.left = null;//原地修改
f = f.right;
dfs(root.right);
}
}
五、有序链表/数组 转 高度平衡二叉搜索树
5.1 有序链表
给定一个单链表,其中的元素按升序排序,将其转换为高度平衡的二叉搜索树。
本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。
class Solution {
public TreeNode sortedListToBST(ListNode head) {
return buildTree(head,null);//当head也为null,返回null
}
//分治思想
public TreeNode buildTree(ListNode left,ListNode right){
if(left == right){
return null;
}
ListNode mid = getMid(left,right);
TreeNode root = new TreeNode(mid.val);
root.left = buildTree(left,mid);
root.right = buildTree(mid.next,right);
return root;
}
//找出链表中间节点
public ListNode getMid(ListNode left,ListNode right){
ListNode fast = left;
ListNode slow = left;
while(fast != right && fast.next != right){//得排除只有两个结点的情况
fast = fast.next.next;
slow = slow.next;
}
return slow;
}
}
5.2 有序数组
将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
if(nums == null) return null;
return bulidTree(nums,0,nums.length-1);
}
public TreeNode bulidTree(int[] nums,int left,int right){
if(left > right) {
return null;
}
int mid = (left + right) / 2;//判断中点
TreeNode root = new TreeNode(nums[mid]);
root.left = bulidTree(nums,left,mid-1);
root.right = bulidTree(nums,mid+1,right);
return root;
}
}
六、1~n所有二叉搜索树
5.1 求种数
给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?
class Solution {
public int numTrees(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i=2;i<n+1;i++){
for(int j=1;j<i+1;j++){
dp[i] = dp[i] + dp[j-1] * dp[i-j];
}
}
return dp[n];
}
}
5.2 输出所有可能的二叉搜索树
给定一个整数 n,生成所有由 1 … n 为节点所组成的 二叉搜索树 。题目来源:LeetCode95
class Solution {
public List<TreeNode> generateTrees(int n) {
if(n==0) return new ArrayList<>();
return dfs(1,n);
}
private List<TreeNode> dfs(int l,int r){
List<TreeNode> res=new ArrayList<>();
if(l>r){
res.add(null);
return res;
}
//枚举根节点
for(int i=l;i<=r;i++){
//根节点为i,此时左子树为 l~i-1
List<TreeNode>left=dfs(l,i-1);
//右子树为i+1~r
List<TreeNode>right=dfs(i+1,r);
for(TreeNode lh:left){
for(TreeNode rh:right){
TreeNode root=new TreeNode(i);
root.left=lh;
root.right=rh;
res.add(root);
}
}
}
return res;
}
}