Atcoder arc097F

63 篇文章 0 订阅
27 篇文章 1 订阅

显然如果一个叶子是黑色的,我们一定不会经过它。于是我们可以不断地剥叶子直到所有叶子均为白色,那么我们会经过起点到终点上的边恰好一次,其他边不同方向经过两次。
假设我们经过所有的边两次,那么每个节点会自动被反色度数次,不妨设第 i i i个点此时的颜色为 c i c_i ci。起点到终点路径上的点除了终点以外都会少反色一次,因此如果起点到终点路径上(不包括终点)某个点的 c i c_i ci为白可以减小 2 2 2的答案, c i c_i ci为黑答案不变,于是我们肯定是求一条 c i c_i ci为白色的点最多的路径最优。注意到叶子节点的 c i c_i ci一定为黑,因此方案是可以构造的。
实现只需要求出dfs两遍求出直径即可,时间复杂度 O ( n ) \mathcal O(n) O(n)

#include <bits/stdc++.h>

using namespace std;

vector <int> e[200005];
int d[200005];

bool ban[200005],val[200005];

int dis[200005];

int dfs(int x,int fa) {
  dis[x]=dis[fa]+val[x];
  int ans=x;
  for(int i=0;i<e[x].size();i++)
    if (e[x][i]!=fa&&!ban[e[x][i]]) {
    	int u=e[x][i];
    	int t=dfs(u,x);
    	if (dis[t]>dis[ans]) ans=t;
	}
  return ans;
}

char str[200005];
queue <int> q;

int main() {
  int n;
  scanf("%d",&n);
  for(int i=1;i<n;i++) {
  	int x,y;
  	scanf("%d%d",&x,&y);
  	e[x].push_back(y);
  	e[y].push_back(x);
  	d[x]++;d[y]++;
  }
  scanf("%s",str+1);
  bool ok=0;
  for(int i=1;i<=n;i++) {
  	val[i]=(str[i]=='W');
  	ok|=val[i];
  }
  if (!ok) {
  	puts("0");
  	return 0;
  }
  for(int i=1;i<=n;i++)
    if (!val[i]&&d[i]<=1) q.push(i);
  while (!q.empty()) {
  	int x=q.front();q.pop();
  	ban[x]=1;
  	for(int i=0;i<e[x].size();i++)
  	  if (!ban[e[x][i]]) {
  	  	  int u=e[x][i];
  	  	  d[u]--;
  	  	  if (!val[u]&&d[u]<=1) q.push(u);
		}
  }
  int rt=0,s=-2;
  for(int i=1;i<=n;i++)
    if (!ban[i]) {
    	rt=i;
    	for(int j=0;j<e[i].size();j++)
    	  if (!ban[e[i][j]]) val[e[i][j]]^=1;
    	s+=2;
	}
  for(int i=1;i<=n;i++)
    if (!ban[i]) s+=val[i];
  rt=dfs(rt,0);
  int x=dfs(rt,0);
  printf("%d\n",max(1,s-2*dis[x]));
  return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ARC069 F 题目传送门:https://atcoder.jp/contests/arc069/tasks/arc069_d 题目描述: 给定两个长度为 $n$ 的字符串 $s$ 和 $t$,每个字符都是小写字母。你需要找到一个长度为 $n$ 的字符串 $u$,满足: - 对于所有 $i \in [1,n]$,都有 $u_i \in \{s_i,t_i\}$。 - 对于所有 $i \in [1,n-1]$,都有 $u_i \neq u_{i+1}$。 - 对于所有 $i \in [1,n-2]$,都有 $u_i \neq u_{i+2}$。 求满足条件的字符串 $u$ 的个数,对 $10^9+7$ 取模。 解题思路: 这是一道比较经典的字符串构造问题,可以用 dp 或者数学方法来解决。 方法一:dp 我们可以使用 dp 来解决这个问题。设 $f_{i,j,k}$ 表示构造了前 $i$ 个字符,第 $i$ 个字符为 $j$,且第 $i-1$ 个字符为 $k$ 的方案数。其中,$j \in \{s_i,t_i\}$,$k \in \{s_{i-1},t_{i-1}\}$。 状态转移方程如下: $$f_{i,j,k} = \sum\limits_{l \in \{s_{i-2},t_{i-2}\},l \neq j} f_{i-1,k,l}$$ 最终的答案为 $\sum\limits_{j \in \{s_n,t_n\}} \sum\limits_{k \in \{s_{n-1},t_{n-1}\}} f_{n,j,k}$。 时间复杂度为 $O(n)$。 方法二:数学 我们可以定义 $a_i$ 表示以 $s_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$b_i$ 表示以 $s_i$ 结尾,且存在相邻字符相等的字符串的方案数;$c_i$ 表示以 $t_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$d_i$ 表示以 $t_i$ 结尾,且存在相邻字符相等的字符串的方案数。 根据题目的限制条件,我们可以得到递推式: $$\begin{cases} a_{i+1} = 2(b_i+c_i+d_i) \\ b_{i+1} = a_i \\ c_{i+1} = 2(a_i+d_i) \\ d_{i+1} = b_i \end{cases}$$ 初始状态为 $a_1=1,b_1=0,c_1=1,d_1=1$。 最终的答案为 $a_n+c_n$。 时间复杂度为 $O(n)$。 代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值