【数据可视化-32】全球住房市场分析(2015-2024 年)数据集可视化分析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

一、引言

  数据可视化是探索和理解复杂数据集的强大工具。通过可视化分析,我们可以揭示全球住房市场的变化趋势、影响住房负担能力的因素以及各变量之间的关系。本文将基于包含丰富信息的全球住房市场数据集,从多个维度进行可视化探索,帮助大家更直观地了解住房市场动态。

二、数据探索

2.1 数据集介绍

  本数据集包含以下变量:

  • Country:记录住房市场数据的国家
  • Year:观测年份
  • House Price Index:房屋平均价格(美元)
  • Rent Index:房产中位月租金(美元)
  • Affordability Ratio:中位房价与中位收入的比率
  • Mortgage Rate (%):平均抵押贷款利率百分比
  • Inflation Rate (%):年通货膨胀率百分比
  • GDP Growth (%):年GDP增长率百分比
  • Population Growth (%):年人口增长率百分比
  • Urbanization Rate (%):城市化率百分比(居住在城市地区的人口比例)

2.2 数据清洗与探索

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 加载数据
df = pd.read_csv('global_housing_market.csv')  # 请替换为实际文件路径

# 查看数据基本信息
print(df.info())
print(df.describe())

# 查看各列唯一值数量
print(df.nunique())

df.isnull().sum()

  从数据的基本信息中,我们可以发现:

  • 数据集包含多种类型变量,包括类别型(如Country)和数值型(如House Price Index、Mortgage Rate (%)等)
  • 一个有200个样本,而且无缺失值

三、单维度特征可视化

3.1 房屋价格指数分布

plt.figure(figsize=(12, 6))
sns.histplot(df['House Price Index'], kde=True, color='teal', bins=30)
plt.title('House Price Index Distribution')
plt.xlabel('House Price Index (USD)')
plt.tight_layout()
plt.show()

  观察结果:房屋价格指数呈现右偏分布,大部分国家的房价集中在中等水平。

3.2 租金指数分布

plt.figure(figsize=(12, 6))
sns.histplot(df['Rent Index'], kde=True, color='coral', bins=30)
plt.title('Rent Index Distribution')
plt.xlabel('Rent Index (USD)')
plt.tight_layout()
plt.show()

  观察结果:租金指数同样呈现右偏分布,中位月租金在多数国家处于较低水平。

3.3 抵押贷款利率分布

plt.figure(figsize=(12, 6))
sns.histplot(df['Mortgage Rate (%)'], kde=True, color='purple', bins=30)
plt.title('Mortgage Rate Distribution')
plt.xlabel('Mortgage Rate (%)')
plt.tight_layout()
plt.show()

  观察结果:抵押贷款利率在不同国家差异显著,多数集中在3%到6%之间。

3.4 通货膨胀率分布

plt.figure(figsize=(12, 6))
sns.histplot(df['Inflation Rate (%)'], kde=True, color='orange', bins=30)
plt.title('Inflation Rate Distribution')
plt.xlabel('Inflation Rate (%)')
plt.tight_layout()
plt.show()

  观察结果:通货膨胀率呈现近似正态分布,多数国家的年通胀率在-2%到4%之间。

四、多维度关系可视化

4.1 房屋价格指数与租金指数的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='House Price Index', y='Rent Index', hue='Country', data=df, palette='husl', alpha=0.6)
plt.title('House Price Index vs Rent Index Relationship')
plt.xlabel('House Price Index (USD)')
plt.ylabel('Rent Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

  观察结果:房屋价格指数与租金指数存在一定的正相关关系,房价较高的国家通常租金也较高。

4.2 房屋价格指数与负担能力比率的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='Affordability Ratio', y='House Price Index', hue='Country', data=df, palette='viridis', alpha=0.6)
plt.title('House Price Index vs Affordability Ratio Relationship')
plt.xlabel('Affordability Ratio')
plt.ylabel('House Price Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

  观察结果:负担能力比率与房价呈负相关关系,房价越高,负担能力比率通常越低,反映住房负担能力的差异。

4.3 抵押贷款利率与房屋价格指数的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='Mortgage Rate (%)', y='House Price Index', hue='Country', data=df, palette='coolwarm', alpha=0.6)
plt.title('House Price Index vs Mortgage Rate Relationship')
plt.xlabel('Mortgage Rate (%)')
plt.ylabel('House Price Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()


  观察结果:抵押贷款利率与房价的关系因国家而异,但总体上高利率国家房价相对较低。

4.4 通货膨胀率与房屋价格指数的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='Inflation Rate (%)', y='House Price Index', hue='Country', data=df, palette='muted', alpha=0.6)
plt.title('House Price Index vs Inflation Rate Relationship')
plt.xlabel('Inflation Rate (%)')
plt.ylabel('House Price Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

  观察结果:通货膨胀率与房价的关系不明显,部分高通胀国家房价较低,而部分低通胀国家房价较高。

4.5 GDP增长率与房屋价格指数的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='GDP Growth (%)', y='House Price Index', hue='Country', data=df, palette='Set2', alpha=0.6)
plt.title('House Price Index vs GDP Growth Relationship')
plt.xlabel('GDP Growth (%)')
plt.ylabel('House Price Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

  观察结果:GDP增长率与房价的关系复杂,经济快速增长的国家房价不一定高,可能受多种因素影响。

4.6 城市化率与房屋价格指数的关系

plt.figure(figsize=(12, 8))
sns.scatterplot(x='Urbanization Rate (%)', y='House Price Index', hue='Country', data=df, palette='pastel', alpha=0.6)
plt.title('House Price Index vs Urbanization Rate Relationship')
plt.xlabel('Urbanization Rate (%)')
plt.ylabel('House Price Index (USD)')
plt.legend(title='Country', bbox_to_anchor=(1, 1), loc='upper left')
plt.tight_layout()
plt.show()

  观察结果:城市化率与房价存在一定的正相关关系,城市化程度高的国家通常房价较高。

五、总结与洞察

  通过以上多维度的可视化分析,我们得出以下关键洞察:

  1. 房价与租金正相关:房屋价格指数与租金指数通常呈正相关关系,房价较高的国家租金也较高。

  2. 负担能力差异显著:不同国家的住房负担能力差异明显,房价越高,负担能力比率通常越低。

  3. 经济因素影响复杂:GDP增长率、通货膨胀率等经济因素与房价的关系复杂,受多种因素综合影响。

  4. 城市化推动房价:城市化率与房价呈正相关关系,城市化程度高的国家通常房价较高。

  5. 抵押贷款利率影响房价:高抵押贷款利率通常伴随较低的房价,反映出贷款成本对住房市场的影响。

  以上分析为理解全球住房市场的动态变化提供了多维度视角,揭示了各变量之间的潜在关系,为进一步的经济研究和政策制定提供了数据支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值