🧑 博主简介:曾任某智慧城市类企业
算法总监
,目前在美国市场的物流公司从事高级算法工程师
一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907
)
💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
【CV数据集介绍-19】烟雾与火灾检测数据集:基于 YOLO 的高效目标识别资源
一、引言
在火灾预防与预警领域,能够实时准确地检测烟雾和火灾是至关重要的。本文介绍的 烟雾-火灾-探测-YOLO 数据集 是一个专为烟雾和火灾检测任务设计的高质量数据集,能够为相关研究和开发工作提供有力支持。
二、数据集概览
该数据集是原始 D-Fire 数据集的增强版本,重新构建后包含验证拆分,方便用户使用。其组织结构清晰,分为训练集、验证集和测试集,每个子集都包含图像文件和对应的 YOLO 格式标签文件。图像文件为 jpg 格式,标签文件为 txt 格式,确保了数据的一致性和易用性。
三、数据样本与类别详解
数据集包含超过 21,000 张图像,涵盖以下场景,数据集的文件夹格式如下:
- 只开火:1,164 张图像,包含仅有火焰的场景。
- 只有烟雾:5,867 张图像,包含仅有烟雾的场景。
- 火灾和烟雾:4,658 张图像,同时包含火焰和烟雾。
- 无相关现象:9,838 张图像,用于区分普通场景与火灾、烟雾场景。
此外,数据集中包含两类主要目标:
- 烟雾(smoke):共 11,865 个边界框标注,涵盖了各种场景下的烟雾特征,如不同浓度、颜色和形态的烟雾。
- 火灾(fire):共 14,692 个边界框标注,包含了不同规模和强度的火焰,以及火焰在各种环境下的表现形式。
介绍的结果展示:
四、数据集的应用场景
该数据集具有广泛的应用场景,尤其适用于以下领域:
- 火灾预警系统:可用于开发实时火灾预警系统,部署在森林、街道、商场、机场等场所,及时发现火灾隐患并发出警报。
- 智能监控:结合监控摄像头,实现对关键区域的实时监控,提升安全管理水平。
- 无人机巡检:为无人机配备火灾检测能力,使其能够在巡检过程中快速识别火灾和烟雾,提高巡检效率和安全性。
- 智慧城市与园区管理:助力智慧城市的火灾防控,保障工业园区、智慧园区等区域的安全。
五、数据集的优势
该数据集具有以下显著优势:
- 高质量标注:所有图像均经过精心标注,确保边界框与目标区域高度匹配,类别标签准确,为模型训练提供了可靠的数据基础。
- 多样化场景覆盖:包含多种场景下的火灾和烟雾图像,如森林火灾、建筑火灾等,还涵盖了不同光照、天气条件下的情况,提升了模型的泛化能力。
- 负样本丰富:包含大量无烟雾和火灾的负样本,有助于模型更好地区分火灾场景与普通场景,降低误报率。
- 易于使用:数据集结构清晰,标注格式统一,方便研究人员和开发人员直接用于模型训练和评估。
六、总结
烟雾-火灾-探测-YOLO 数据集 是一个专为烟雾和火灾检测设计的高质量数据集,包含了超过 21,000 张图像和两类主要目标的详细标注。它能够为火灾预警系统、智能监控、无人机巡检等应用提供丰富的数据支持。如果你对火灾预防与预警相关项目感兴趣,这个数据集无疑是一个极具价值的资源。希望这篇介绍能够帮助大家更好地了解该数据集,促进其在火灾防控领域的广泛应用。
注: 博主目前收集了6900+份相关数据集,有想要的可以领取部分数据: