贝叶斯模型(贝叶斯,高斯,伯努利)

33 篇文章 0 订阅
24 篇文章 0 订阅

在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn import neighbors
from sklearn.metrics import classification_report,confusion_matrix
from sklearn.naive_bayes import MultinomialNB,BernoulliNB,GaussianNB


    
def main():
    print ("----------ing-------------")
    iris_data = load_iris()
    x_data= iris_data.data
    y_data= iris_data.target
    x_train,x_test,y_train,y_test=train_test_split(x_data,y_data)

    x_ = (x_data[-1])#[5.9 3.  5.1 1.8]
    x_ = x_[np.newaxis,:]#[[5.9 3.  5.1 1.8]]
    y_ = (y_data[-1])

    mul_nb = MultinomialNB()#贝叶斯模型
    mul_nb.fit(x_train,y_train)
    mul_nb_result=(classification_report(mul_nb.predict(x_test),y_test))
    mul_nb_matrix=(confusion_matrix(mul_nb.predict(x_test),y_test))
    print("mul_nb_result:\n",mul_nb_result)
    print("mul_nb_matrix:\n",mul_nb_matrix)

    mul_predict = mul_nb.predict(x_)
    print("mul_predict result = {}".format(mul_predict))
    

    ber_nb = BernoulliNB()#伯努利模型
    ber_nb.fit(x_train,y_train)
    ber_nb_result=(classification_report(ber_nb.predict(x_test),y_test))
    ber_nb_matrix=(confusion_matrix(ber_nb.predict(x_test),y_test))
    print("ber_nb_result:\n",ber_nb_result)
    print("ber_nb_matrix:\n",ber_nb_matrix)

    ber_predict = ber_nb.predict(x_)
    print("ber_predict result = {}".format(ber_predict))

    gau_nb = GaussianNB()#高斯模型
    gau_nb.fit(x_train,y_train)
    gau_nb_result=(classification_report(gau_nb.predict(x_test),y_test))
    gau_nb_matrix=(confusion_matrix(gau_nb.predict(x_test),y_test))
    print("gau_nb_result:\n",gau_nb_result)
    print("gau_nb_matrix:\n",gau_nb_matrix)

    gau_predict = gau_nb.predict(x_)
    print("gau_predict result = {}".format(gau_predict))


    print ("----------end-------------")

main()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佐倉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值