贝叶斯机器学习系列:
贝叶斯①——贝叶斯原理篇(联合概率&条件概率&贝叶斯定理&拉普拉斯平滑)
贝叶斯③——Python实现贝叶斯文本分类(伯努利&多项式模型对比)
贝叶斯④——Sklean新闻分类(TF-IDF)
贝叶斯⑤——搜狗新闻分类实战(jieba + TF-IDF + 贝叶斯)
贝叶斯⑥——银行借贷模型(贝叶斯与决策树对比)
一、高斯模型
大家在学习高等数学时,应该学过高斯分布,也就是正态分布,是一种连续型变量的概率分布。简单来说,高斯分布就是当频率直方图的区间变得特别小时的拟合曲线,像座小山峰,其中两端的特别小,越往中间越高。
现实生活中有很多现象均服从高斯分布,比如年龄,收入,身高,体重等,大部分都处于中等水平,特别少和特别多的比例都会比较低。
高斯概率分布是由均值μ和标准差σ唯一确定的,如下图