贝叶斯②——贝叶斯3种分类模型及Sklearn使用(高斯&多项式&伯努利)

本文介绍了贝叶斯分类中的三种模型:高斯模型、多项式模型和伯努利模型。高斯模型处理连续型特征,基于训练样本计算特征均值和标准差;多项式模型适用于离散特征,采用拉普拉斯平滑;伯努利模型处理二元特征,计算0-1概率。文章通过Sklearn库展示了如何使用这三种模型,并给出了相关参数设置和方法调用。
摘要由CSDN通过智能技术生成

贝叶斯机器学习系列:
贝叶斯①——贝叶斯原理篇(联合概率&条件概率&贝叶斯定理&拉普拉斯平滑)
贝叶斯③——Python实现贝叶斯文本分类(伯努利&多项式模型对比)
贝叶斯④——Sklean新闻分类(TF-IDF)
贝叶斯⑤——搜狗新闻分类实战(jieba + TF-IDF + 贝叶斯)
贝叶斯⑥——银行借贷模型(贝叶斯与决策树对比)

一、高斯模型

大家在学习高等数学时,应该学过高斯分布,也就是正态分布,是一种连续型变量的概率分布。简单来说,高斯分布就是当频率直方图的区间变得特别小时的拟合曲线,像座小山峰,其中两端的特别小,越往中间越高。

现实生活中有很多现象均服从高斯分布,比如年龄,收入,身高,体重等,大部分都处于中等水平,特别少和特别多的比例都会比较低。

高斯概率分布是由均值μ和标准差σ唯一确定的,如下图

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值