常用滤波器

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np

def display_img(img):
    cv.imshow('image',img)
    cv.waitKey(0)
    cv.destroyAllWindows()

def average_(filepath):#均值滤波,适用于去除通过扫描得到的图像中的颗粒噪声
    img = cv.imread(filepath)
    blur = cv.blur(img,(3,3))
    #display_img(blur)
    return blur
   
def box_(filepath):#方块滤波通过“修正”重建块的像素值,尤其是边间附近的像素值,从而达到消除编解码算法带来的方块效应的目的
    img = cv.imread(filepath)
    box = cv.boxFilter(img,-1,(3,3),normalize=True)
    #display_img(box)
    return box

def gauss_(filepath):# 高斯滤波器是一种线性滤波器,能够有效的抑制噪声
    img = cv.imread(filepath)
    gauss = cv.GaussianBlur(img,(5,5),1)
    #display_img(gauss)
    return gauss
def median_(filepath):#中值滤波对于滤除脉冲干扰及图像扫描噪声最为有效
    img = cv.imread(filepath)
    median = cv.medianBlur(img,5)
    #display_img(median)
    return median
    
def main():
    filepath ="lenda.png"
    average = average_(filepath)
    box = box_(filepath)
    gauss = gauss_(filepath)
    median = median_(filepath)
    res = np.hstack((average,box,gauss,median))
    display_img(res)

main()

均值滤波, 适用于去除通过扫描得到的图像中的颗粒噪声
方块滤波,通过“修正”重建块的像素值,尤其是边间附近的像素值,从而达到消除编解码算法带来的方块效应的目的
高斯滤波,是一种线性滤波器,能够有效的抑制噪声
中值滤波,对于滤除脉冲干扰及图像扫描噪声最为有效在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

佐倉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值