3.1 Linear Basis Function Models(PRML 系列----3.1.5 Multiple outputs)

multiple, independent regression problems.

共享相同的基函数
在这里插入图片描述
在这里插入图片描述
β 求 导 可 计 算 β 估 计 值 \beta求导可计算\beta估计值 ββ

多变量解耦:原因在于 W ( M ∗ K ) W(M*K) W(MK)只定义了高斯噪声的输出,只考虑单变量即可

在这里插入图片描述
W W W K 个 变 量 之 间 的 协 方 差 解 偶 证 明 K个变量之间的协方差解偶证明 K
在这里插入图片描述 p ( t ∣ x , W , β ) = N ( t ∣ W T ϕ ( x ) , β − 1 I ) p(\mathbf{t} | \mathbf{x}, \mathbf{W}, \beta)=\mathcal{N}\left(\mathbf{t} | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \beta^{-1} \mathbf{I}\right) p(tx,W,β)=N(tWTϕ(x),β1I) 对 于 单 个 样 本 来 说 , 上 面 式 子 中 t 表 示 K 个 变 量 , 其 均 值 W T ϕ ( x ) 对于单个样本来说,上面式子中\mathbf{t}表示K个变量,其均值\mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) ,tKWTϕ(x) 为 K 维 向 量 , 协 方 差 矩 阵 为 对 角 阵 , 说 明 变 量 之 间 相 互 独 立 为K维向量,协方差矩阵为对角阵,说明变量之间相互独立 K,
在这里插入图片描述

简单证明如下

用 到 的 公 式 : d ∣ A ∣ = t r ( A ∗ d A ) , ∂ ∣ A ∣ ∂ A = ( A ∗ ) T = ∣ A ∣ ( A − 1 ) T , 特 别 当 A = Σ 为 对 称 矩 阵 时 , 行 列 式 对 矩 阵 的 导 数 = 行 列 式 ∗ 矩 阵 的 逆 用到的公式:d|A|=tr(A^*dA),\frac{\partial{\mathbf{|A|}}}{\partial\mathbf{A}}=(A^*)^T=|A|(A^{-1})^T,特别当A=\Sigma为对称矩阵时,行列式对矩阵的导数=行列式*矩阵的逆 dA=tr(AdA),AA=(A)T=A(A1)T,A=Σ=
A A − 1 = I AA ^{-1}=\mathrm{I} AA1=I d A A − 1 + A d A − 1 = 0 dAA ^{-1}+AdA^{-1}=\mathrm{0} dAA1+AdA1=0 d A − 1 = − A − 1 d A A − 1 dA^{-1}=-A^{-1}dAA ^{-1} dA1=A1dAA1
有了以上公式对下式中的 Σ \mathbf\Sigma Σ求导
ln ⁡ L ( W , Σ ) = − N 2 ln ⁡ ∣ Σ ∣ − 1 2 ∑ n = 1 N ( t n − W T ϕ ( x n ) ) T Σ − 1 ( t n − W T ϕ ( x n ) ) \ln L(\mathbf{W}, \mathbf{\Sigma})=-\frac{N}{2} \ln |\mathbf{\Sigma}|-\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{t}_{n}-\mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right)^{\mathrm{T}} \mathbf{\Sigma}^{-1}\left(\mathbf{t}_{n}-\mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{n}\right)\right) lnL(W,Σ)=2NlnΣ21n=1N(tnWTϕ(xn))TΣ1(tnWTϕ(xn))

令 A = ( t n − W T ϕ ( x n ) ) 令A=(\mathbf{t}_n-\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi(\mathbf{x}_n)}) A=(tnWTϕ(xn))
f = A T Σ − 1 A f=A^{\mathrm{T}}\mathbf{\Sigma}^{-1}A f=ATΣ1A d f = A T d Σ − 1 A = t r ( A T d Σ − 1 A ) = t r ( A A T d Σ − 1 ) df=A^{\mathrm{T}}d\mathbf{\Sigma}^{-1}A=tr(A^{\mathrm{T}}d\mathbf{\Sigma}^{-1}A)=tr(AA^{\mathrm{T}}d\mathbf{\Sigma}^{-1}) df=ATdΣ1A=tr(ATdΣ1A)=tr(AATdΣ1) = − t r ( A A T Σ − 1 d Σ Σ − 1 ) = − t r ( Σ − 1 A A T Σ − 1 d Σ ) =-tr(AA^{\mathrm{T}}\mathbf{\Sigma}^{-1}d\mathbf{\Sigma}\mathbf{\Sigma}^{-1})=-tr(\mathbf{\Sigma}^{-1}AA^{\mathrm{T}}\mathbf{\Sigma}^{-1}d\mathbf{\Sigma}) =tr(AATΣ1dΣΣ1)=tr(Σ1AATΣ1dΣ) ∂ f ∂ Σ = − Σ − 1 A A T Σ − 1 \frac{\partial f}{\partial \mathbf{\Sigma}}=-\mathbf{\Sigma}^{-1}AA^{\mathrm{T}}\mathbf{\Sigma}^{-1} Σf=Σ1AATΣ1
因此有:
− N 2 Σ − 1 + 1 2 ∑ n = 1 N Σ − 1 A A T Σ − 1 = 0 -\frac{N}{2}\mathbf{\Sigma}^{-1}+\frac{1}{2}\sum_{n=1}^{N}\mathbf{\Sigma}^{-1}AA^{\mathrm{T}}\mathbf{\Sigma}^{-1}=0 2NΣ1+21n=1NΣ1AATΣ1=0 ∑ n = 1 N Σ − 1 + ∑ n = 1 N Σ − 1 A A T Σ − 1 = 0 \sum_{n=1}^{N}\mathbf{\Sigma}^{-1}+\sum_{n=1}^{N}\mathbf{\Sigma}^{-1}AA^{\mathrm{T}}\mathbf{\Sigma}^{-1}=0 n=1NΣ1+n=1NΣ1AATΣ1=0 − ∑ n = 1 N Σ − 1 ( I − A A T Σ − 1 ) = 0 -\sum_{n=1}^{N}\mathbf{\Sigma}^{-1}(\mathrm I-AA^{\mathrm{T}}\mathbf{\Sigma}^{-1})=0 n=1NΣ1(IAATΣ1)=0 ∑ n = 1 N ( I − A A T Σ − 1 ) = 0 \sum_{n=1}^{N}(\mathrm I-AA^{\mathrm{T}}\mathbf{\Sigma}^{-1})=0 n=1N(IAATΣ1)=0 N I = ∑ n = 1 N A A T Σ − 1 N\mathrm I=\sum_{n=1}^{N}AA^{\mathrm{T}}\mathbf{\Sigma}^{-1} NI=n=1NAATΣ1 Σ = 1 N ∑ n = 1 N A A T \mathbf{\Sigma}=\frac{1}{N}\sum_{n=1}^{N}AA^{\mathrm{T}} Σ=N1n=1NAAT

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值