求最优化问题,在局部内用一个二次函数来近似
要求对称正定时,才是下降方向
拟牛顿法
对于拟牛顿法,采用
m
k
(
p
)
来
近
似
f
(
x
k
+
p
)
m_k(p)来近似f(x_k+p)
mk(p)来近似f(xk+p)
B
k
+
1
=
y
k
/
s
k
=
Δ
f
k
+
1
−
Δ
f
k
x
k
+
1
−
x
k
B_{k+1}=y_k/s_k=\frac{\Delta f_{k+1}-\Delta f_k}{x_{k+1}-x_k}
Bk+1=yk/sk=xk+1−xkΔfk+1−Δfk,即用一阶导数的割线secant 来近似
曲率条件保证存在这样的对称正定矩阵,当使用线搜索方法时,保证Wolf 条件存在,就可以保证曲率条件的存在性
B
k
+
1
=
y
k
/
s
k
=
Δ
f
k
+
1
−
Δ
f
k
x
k
+
1
−
x
k
B_{k+1}=y_k/s_k=\frac{\Delta f_{k+1}-\Delta f_k}{x_{k+1}-x_k}
Bk+1=yk/sk=xk+1−xkΔfk+1−Δfk对应为n个方程,远小于B的未知个数
DFP是秩二修正
BFGS 方法