Numerical Optimization---拟牛顿法

求最优化问题,在局部内用一个二次函数来近似在这里插入图片描述
要求对称正定时,才是下降方向
在这里插入图片描述

拟牛顿法

对于拟牛顿法,采用 m k ( p ) 来 近 似 f ( x k + p ) m_k(p)来近似f(x_k+p) mk(p)f(xk+p)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
B k + 1 = y k / s k = Δ f k + 1 − Δ f k x k + 1 − x k B_{k+1}=y_k/s_k=\frac{\Delta f_{k+1}-\Delta f_k}{x_{k+1}-x_k} Bk+1=yk/sk=xk+1xkΔfk+1Δfk,即用一阶导数的割线secant 来近似
曲率条件保证存在这样的对称正定矩阵,当使用线搜索方法时,保证Wolf 条件存在,就可以保证曲率条件的存在性
在这里插入图片描述
在这里插入图片描述
B k + 1 = y k / s k = Δ f k + 1 − Δ f k x k + 1 − x k B_{k+1}=y_k/s_k=\frac{\Delta f_{k+1}-\Delta f_k}{x_{k+1}-x_k} Bk+1=yk/sk=xk+1xkΔfk+1Δfk对应为n个方程,远小于B的未知个数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
DFP是秩二修正

BFGS 方法
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值