思路来源于84 题
从暴力到双指针原理
- 暴力
class Solution {
public:
int maxArea(vector<int>& height) {
int n=height.size();
int res=0;
for(int i=0;i<n;i++){
for(int j=i;j<n;j++){
res=max(res,min(height[i],height[j])*(j-i));
}
}
return res;
}
};
第二种可通过的算法,即分别寻找以第i个开头和结尾的最大面积
class Solution {
public:
int maxArea(vector<int>& height) {
int n=height.size();
int res=0;
int i,j;
//以第i 个版子开头,寻找右边最后一个比它大的板子
for(i=0;i<n;i++){
for(j=n-1;j>i;j--){
if(height[j]>=height[i])
break;
}
res=max(res,height[i]*(j-i));
}
//以第i 个版子,寻结尾,找左边第一个比它大的板子
for( i=n-1;i>=0;i--){
for(j=0;j<i;j++){
if(height[j]>=height[i])
break;
}
res=max(res,height[i]*(i-j));
}
return res;
}
};
由第二个算法到双指针,考虑指针i,j ;因为i从左到右,j从右到左,若(height[i]<height[j]),则j必定是i右边最后一个比j大的,因此可以求出以i开头最大的面积,接下来需考虑以j结尾的最大面积(肯定位于i之后),即i++;同理考虑(height[i]>height[j])的情况
class Solution {
public:
int maxArea(vector<int>& height) {
int n=height.size();
int res=0;
int i=0,j=n-1;
while(i<j){
res=max(res,min(height[i],height[j])*(j-i));
if(height[j]>=height[i])
i++;
else
j--;
}
return res;
}
};