46. 全排列

本文深入解析了全排列算法,提供了两种C++实现方法和一种Python实现方式,详细介绍了如何生成给定序列的所有可能排列,适用于没有重复数字的情况。通过递归和回溯策略,文章展示了算法的具体步骤和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个 没有重复数字的序列,返回其所有可能的全排列。

示例:

输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]

解题思路:

依次放入1,2,3,便生成一个排列,然后回溯,3,2,分别出栈,然后3 、2依次入栈,之后类似回溯。

c++ 代码
class Solution {
private:
    vector<vector<int>> res;
    vector<bool>used;
    //p中保存了index个数字,向p中填加第index+1 个元素
    void _permute(const vector<int>&nums,int index,vector<int>&p){
         if(index == nums.size()){
            res.push_back(p);
            return;
        }
        

        for(int i = 0 ; i < nums.size() ; i ++)
            if(!used[i]){
                used[i] = true;
                p.push_back(nums[i]);
                _permute(nums, index + 1, p );
                p.pop_back();
                used[i] = false;
            }
        return;
}

public:
    vector<vector<int>> permute(vector<int>& nums) {
        res.clear();
        if(nums.size()==0)
            return res;
        vector<int> p;
        used=vector<bool>(nums.size(),false);
        _permute(nums,0,p);
        return res;
    }
};
c++ 代码2
/// Time Complexity: O(n!)
/// Space Complexity: O(n)
class Solution {

private:

    vector<vector<int>> res;

    void generatePermutation(vector<int>& nums, int index){

        if(index == nums.size()){
            res.push_back(nums);
            return;
        }

        for(int i = index ; i < nums.size() ; i ++){
            swap(nums[i], nums[index]);
            generatePermutation(nums, index + 1);
            swap(nums[i], nums[index]);
        }

        return;
    }

public:
    vector<vector<int>> permute(vector<int>& nums) {

        res.clear();
        if(nums.size() == 0)
            return res;

        generatePermutation(nums, 0);

        return res;
    }
};


void printVec(const vector<int>& vec){
    for(int e: vec)
        cout << e << " ";
    cout << endl;
}
python 代码
class Solution:
    def permute(self, nums: List[int]) -> List[List[int]]:
       
        res=[]
        if not nums:
            return res
        self.helper(nums,res,[])
        return res
    def helper(self,nums,res,line):
        if not nums:
            res.append(line)
            return 
        for i,num in enumerate(nums):
            self.helper(nums[:i]+nums[i+1:],res,line+[nums[i]])

        
### C++ 实现全排列算法示例 #### 使用回溯法实现全排列 为了生成给定数组 `nums` 的所有可能排列,可以采用回溯方法。这种方法通过逐步构建候选解并撤销选择来进行探索。 ```cpp #include <vector> using namespace std; void backtrack(vector<int>& nums, vector<vector<int>>& result, int start) { if (start == nums.size()) { result.push_back(nums); return; } for (int i = start; i < nums.size(); ++i) { swap(nums[start], nums[i]); backtrack(nums, result, start + 1); // 继续处理下一个位置 swap(nums[start], nums[i]); // 恢复原状以便尝试其他可能性 } } vector<vector<int>> permute(vector<int>& nums) { vector<vector<int>> result; if (nums.empty()) return result; backtrack(nums, result, 0); return result; } ``` 这段代码展示了如何利用递归来遍历每一个元素作为起始点,并交换当前索引与其他未使用的数值的位置,从而形成新的组合[^1]。 #### 利用标准库函数 `next_permutation` 除了手动编写回溯逻辑外,还可以借助 STL 提供的功能简化开发过程: ```cpp #include <algorithm> #include <vector> vector<vector<int>> permuteSTL(const vector<int>& nums) { vector<vector<int>> permutations; vector<int> temp = nums; sort(temp.begin(), temp.end()); do { permutations.push_back(temp); } while (std::next_permutation(temp.begin(), temp.end())); return permutations; } ``` 此版本先对输入序列进行了排序操作,之后调用了内置的 `next_permutation()` 函数迭代获取所有的排列情况[^4]。 #### 基于协程的全排列方案 对于更复杂的场景或者追求性能优化的情况下,也可以考虑使用协程来并发执行多个子任务以提高效率: ```cpp // 这里仅提供概念性的伪代码框架,具体实现依赖编译器支持程度以及平台特性 generator<vector<int>> coroutinePermute(vector<int> remainingElements){ if(remainingElements.empty()){ co_return; } for(auto& elem : remainingElements){ auto currentElement = elem; auto restOfList = remove_element_from_list(currentElement); yield {currentElement}; for(auto subsequence : coroutinePermute(restOfList)){ yield prepend_to_sequence(subsequence, currentElement); } } } ``` 上述片段展示了一个基于协程的概念模型,在实际应用中需根据目标环境调整语法细节[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值