芒果YOLOv5改进95:主干Backbone篇:基于CVPR顶会论文的SwinV2核心结构,提出独家原创SwinV2TRX、SwinV2TRY、SwinV2TRXZ等新结构
💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv5 按步骤操作运行改进后的代码即可
内含多种 独家二次原创
改进 SwinV2 网络配置文件展示及其核心代码改进
论文理论部分 + 原创最新改进 YOLOv5 代码实践改进
Swin Transformer v2论文部分说明
该论文作者提出了缩放 Swin Transformer 的技术 多达 30 亿个参数,使其能够使用多达 1,536 个图像进行训练1,536 分辨率。通过扩大容量和分辨率,Swin Transformer 在四个具有代表性的视觉基准上创造了新记录:ImageNet-V2 图像分类的84.0% top-1 准确率,C