(KNN)iris种类预测

# -*- coding: cp936 -*-
from sklearn.datasets import load_iris
iris=load_iris()
iris.data.shape
print iris.DESCR

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.25,random_state=33)

from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)

knc=KNeighborsClassifier()
knc.fit(X_train,y_train)
y_predict=knc.predict(X_test)

print 'The accuracy of KNN is',knc.score(X_test,y_test)

from sklearn.metrics import classification_report
print classification_report(y_test,y_predict,target_names=iris.target_names)

import sklearn
model=sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto", leaf_size=30, p=2, metric="minkowski", metric_params=None, n_jobs=1)

或者这样子

# -*- coding: cp936 -*-
from sklearn.datasets import load_iris
iris=load_iris()
iris.data.shape
print iris.DESCR

from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.25,random_state=33)

from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier


ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)





import sklearn
model=sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto", leaf_size=30, p=2, metric="minkowski", metric_params=None, n_jobs=1)

model.fit(X_train,y_train)
y_predict=model.predict(X_test)

print 'The accuracy of KNN is',model.score(X_test,y_test)

from sklearn.metrics import classification_report
print classification_report(y_test,y_predict,target_names=iris.target_names)


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值