# -*- coding: cp936 -*-
from sklearn.datasets import load_iris
iris=load_iris()
iris.data.shape
print iris.DESCR
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.25,random_state=33)
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)
knc=KNeighborsClassifier()
knc.fit(X_train,y_train)
y_predict=knc.predict(X_test)
print 'The accuracy of KNN is',knc.score(X_test,y_test)
from sklearn.metrics import classification_report
print classification_report(y_test,y_predict,target_names=iris.target_names)
import sklearn
model=sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto", leaf_size=30, p=2, metric="minkowski", metric_params=None, n_jobs=1)
或者这样子
# -*- coding: cp936 -*-
from sklearn.datasets import load_iris
iris=load_iris()
iris.data.shape
print iris.DESCR
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.25,random_state=33)
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
ss=StandardScaler()
X_train=ss.fit_transform(X_train)
X_test=ss.transform(X_test)
import sklearn
model=sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights="uniform", algorithm="auto", leaf_size=30, p=2, metric="minkowski", metric_params=None, n_jobs=1)
model.fit(X_train,y_train)
y_predict=model.predict(X_test)
print 'The accuracy of KNN is',model.score(X_test,y_test)
from sklearn.metrics import classification_report
print classification_report(y_test,y_predict,target_names=iris.target_names)