深入理解最大似然估计、最大后验概率估计和贝叶斯公式

       在博客最大似然估计中,通过简单的例子对最大似然估计原理有了一个直观的理解;在博客朴素贝叶斯分类器中,对贝叶斯公式有了一个粗浅的理解,而且我们知道了贝叶斯分类器原理就是最大后验概率估计。这篇博客主要是深入理解最大似然估计、最大后验概率估计、贝叶斯公式的数学原理和它们之间的联系。

基本概念理解

       想要搞清楚上述几个原理,首先要弄明白概率、统计、概率函数和似然函数

  • 概率

       概率研究的是:模型和参数已知,预测模型产生某结果的概率。

  • 统计

       统计研究的和概率正好相反,统计已有数据(采样样本/实验结果),估计模型和模型的参数。

  • 概率函数

       对于函数P(x|\theta )x表示数据,\theta表示模型参数。当\theta已知x为变量时,P(x|\theta )为概率函数,表示在已知概率分布模型的情况下,变量x取不同值的概率(可以理解为产生不同结果的概率)

  • 似然函数

       对于函数P(x|\theta ),当\theta未知x已知时,P(x|\theta )为似然函数,表示对于不同模型参数\theta,出现x这个数据(结果)的概率

最大似然估计

      现在假设\theta已知,那么P(x_{1}|\theta )表示采样得到数据x_{1}的概率,那么采样得到x_{1},x_{2}...x_{n}的联合概率就自然表示为:P(x_{1},x_{2}...x_{n}|\theta ),由于每次采样是互不影响的(产生不同的结果是相互独立),最终联合概率就可以表示为:

                                        P(x_{1},x_{2}...x_{n}|\theta )=\prod_{i=1}^{n}p(x_{i}|\theta )

      但问题是\theta是未知,只有数据,我们就是要求\theta,最大似然估计的思想就是使得似然函数(联合概率)最大,使似然函数最大\theta {}'就是\theta的最佳估计。

贝叶斯公式

      通过之前的博客朴素贝叶斯分类器已经知道,贝叶斯公式可以简化为P(C|X)=P(X|C)*P(C),那么贝叶斯公式有什么作用呢?如果你现在需要构建一个模型P(C|X)并求解,而P(C|X)P(C|X)难以求解,于是通过贝叶斯公式转换为对P(X|C)*P(C)求解(曲线救国)。                                                

       如果将X看做是数据,C看做是模型,那么贝叶斯公式可以表示成:后验概率=似然函数*先验概率

最大后验概率估计

       最大后验概率估计即对P(C|X)进行最大估计,而P(C|X)难以求解,于是通过贝叶斯公式转换为对P(X|C)*P(C)进行最大估计,所以最大后验概率估计=最大似然估计*先验概率

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值