全概率公式、贝叶斯公式以及先验概率和后验概率

  • 全概率公式

基本思想“先化整为零,再聚零为整”

例题1:人的性别由一对性染色体决定:男为XY,女为XX,每个人从父母处各得到一个性染色体,色盲基因由X染色体携带,且若男性的X染色体有此基因则男性患色盲,女性则要两个X染色体均有此基因才患色盲,而两个X是否有色盲基因是独立的。设色盲基因出现概率为0.08。又设男女婴出生比为110:100。问一新生儿有色盲的概率是多少?

设“新生儿有色盲”为事件A,则目标概率求 \small P\left ( A \right )

若记 B表示“男婴”,B 表示“女婴”,则有:

\small P\left ( A\mid B \right )=0.08,P\left ( A \mid B \right )\small P\left ( A \mid \overline B\right )= 0.08 \times 0.08=0.0064

加权平均: 

        \small \begin{align*}\small P\left ( A \right )&= P\left ( B \right ) \times P\left ( A \mid B \right )+p\left ( \overline B \right ) \times P\left ( A \mid \overline B \right ) \\ &= \frac{0.08 \times 1.1}{1.1+1}+\frac{0.0064 \times 1}{1.1+1}\\&= 0.045\end{align*}

如上图计算A的概率步骤:

①先”化整为零“ 计算 \small P\left ( A \mid B_i \right ),i=1,2...n

②再“聚零为整”计算 \small P\left ( A \mid B_i \right )P\left ( B_i \right )+...+P\left ( A \mid B_n \right )P\left ( B_n \right )

注意:\small P\left ( A \mid B_i \right )P\left ( B_i \right )=P\left ( AB_i \right )  又   \small A=\bigcup _{i=1}^{n}AB_i,且每一项是互斥的,得出全概率公式:

          \small P\left ( A \right )=\sum _{i=1}^{n}P\left (A \mid B_i \right )P\left ( B_i \right )

例题2:(追捕)现追捕某犯罪嫌疑人,据分析他外逃、市内藏匿、自首的概率依次为0.3, 0.5, 0.2。又设在外逃及市内藏匿情况下,成功缉拿的概率依次是0.4, 0.7。问该犯罪嫌疑人最终归案的概率是多少?

此问题的划分:外逃(B1)、市内藏匿(B2) 、自首(B3),设A:最终归案 则:

   \small \begin{align*} P\left ( A \right )&=P\left ( A\mid B_1 \right )P\left ( B_1 \right )\times P\left ( A\mid B_2 \right )P\left ( B_2 \right )\times P\left ( A\mid B_3 \right )P\left ( B_3 \right )\\&=0.4\times 0.3+0.7\times 0.5+1\times 0.2 \\&=0.67 \end{align*}

  • 贝叶斯公式

全概率公式通过划分\small \left \{ B_i \mid i=1...n \right \}来计算一个事件\small A的概率,有时候需要弄清楚在\small A发生的条件下,每个\small B_i发生的条件概率。

例题3:(癌症检查)某种医学方法用于检查某种癌症,已知该癌症的发病率为0.002,该方法对于癌症患者呈阳性反应的概率为0.98,对于非癌症患者呈阳性反应的概率为0.04。若某人在此项检查中呈阳性,他实际患癌症的概率为多少?

分析:设\small C 为“患癌症”,目标要求\small P\left ( C\mid A \right )。A为“反应呈阳性”,此处 \small C\small \overline C是一个划分。按条件概率公式,\small P\left ( C\mid A \right )=\frac{P\left ( CA \right )}{P\left ( A \right )},而 \small P\left ( CA \right )= P\left ( A\mid C \right )P\left ( C \right ),代入可得:

                                  \small \begin{align*} P\left ( C\mid A \right )&=\frac{P\left ( A\mid C \right )P\left ( C \right )}{P\left ( A \right )}\\&=\frac{P\left ( A \mid C \right )P\left ( C \right )}{P\left ( A\mid C \right )P\left ( C \right )+P\left ( A\mid \overline C \right )P\left ( \overline C \right )}\\&=\frac{0.98\times 0.002}{0.98\time 0.002+0.04\times 0.998}\\&\approx 0.0468 \end{align*}

贝叶斯公式:设\small B_1...B_n是S的一个划分,,则对于 \small i=1...n 有        \small P\left ( B_i\mid A \right )=\frac{p\left ( A\mid B_i \right )P\left ( B_i \right )}{\sum _{k=1}^{n}P\left ( A\mid B_k \right )P\left ( B_k \right )}

贝叶斯公式常用于由果溯因,可根据已发生的事件来推断使之发生各个因素的可能性。

  • 先验概率和后验概率

先验概率就是根据经验给出的概率;后验概率就是经过随机试验后,由结果对先验概率进行修正。修正方法用贝叶斯公式,这么说可能有点抽象,直接上例子。

例题4:(靶纸判断)已知一老战士与一新战士射击命中率分别为0.9与0.5。两人一同去射击,各3发。设每发命中与否均为独立的。后发现现场留下一靶纸,初步判断认为属于新、老战士留下的可能性是等同的。(这个就是由以往经验,我们可以估计属于新、老战士留下的概率各是二分之一)。后发现靶纸上有2发命中,问此时对可能性问题有什么新看法?

分析:设\small A为“命中2枪”,\small B_1为“老战士留下”,\small B_2为“新战士留下”

先验概率:二者概率都为 \bg_black \bg_black \small \frac {1}{2}

我们目的要比较 P\left ( B_1\mid A \right ) 和 P\left ( B_2\mid A \right )  的大小

P\left ( B_i\mid A \right )=\frac{P\left ( A\mid B_i \right )P\left ( B_i \right )}{\sum _{k=1}^{2}P\left ( A\mid B_k \right )P\left ( B_k \right )},i=1,2,分母一样,P\left ( B_1 \right )=P\left ( B_2 \right ),所以只需要比较 P\left ( A\mid B_1 \right )  和 P\left ( A\mid B_2 \right ) 的大小,P\left ( A\mid B_1 \right )=\mathbb{C}_3^2\times0.9^2\times 0.1=0.243,  P\left ( A\mid B_2 \right )=\mathbb{C}_3^2\times0.5^2\times 0.5=0.375

结论:新战士留下的可能性大

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱战无双

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值