预测年收入是否大于50K美元

本文介绍了一个基于K近邻(KNN)算法的模型,用于预测个人年收入是否超过50K美元。通过对数据进行预处理、特征工程及模型训练,找到了最佳的邻居数k值,并评估了模型的表现。

预测年收入是否大于50K美元

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import time
import  numpy as np

t_start = time.time()
#1.加载样本数据
data = pd.read_csv('E:\\Study\\Python\\10天学会机器学习从入门到深度学习\\第4章 KNN\\预测年收入是否大于50K美元--adults\\adult.csv')

#2.样本数据特征提取
feature = data[['age','education_num','occupation','hours_per_week']]#feature.shape = (32561,4)
target = data['salary']#target.shape = (32561,)

#3.样本数据集拆分  训练数据集train_data   测试数据集test_data
x_train,x_test,y_train,y_test = train_test_split(feature,target,test_size=0.2,random_state=2021)

#4.观察特征数据看是否需要进行特征工程  由于occupation栏是非数值  所以要one_hot
occ_one_hot = pd.get_dummies(x_train['occupation'])
x_train = pd.concat((x_train,occ_one_hot),axis=1).drop(labels='occupation',axis=1)#axis=1代表列

#5.实例化模型对象
knn = KNeighborsClassifier(n_neighbors=33).fit(x_train,y_train)

#6.使用训练集数据训练模型

#7.测试模型:使用测试数据
occ_one_hot = pd.get_dummies(x_test['occupation'])
x_test = pd.concat((x_test,occ_one_hot),axis=1).drop(labels='occupation',axis=1)#axis=1代表列

#寻找最优的k值
print('开始寻找最优的k值...')
scores = [0]*50
for i in range(1,50):
    knn = KNeighborsClassifier(n_neighbors=i).fit(x_train,y_train)
    scores[i] = knn.score(x_test,y_test)

t_end = time.time()
print("共计耗时:",(t_end-t_start),'秒')
print('knn测试集评分:',max(scores))
print('最优的k值:',np.argmax(np.array(scores)))


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yangbocsu

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值