预测年收入是否大于50K美元
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import time
import numpy as np
t_start = time.time()
#1.加载样本数据
data = pd.read_csv('E:\\Study\\Python\\10天学会机器学习从入门到深度学习\\第4章 KNN\\预测年收入是否大于50K美元--adults\\adult.csv')
#2.样本数据特征提取
feature = data[['age','education_num','occupation','hours_per_week']]#feature.shape = (32561,4)
target = data['salary']#target.shape = (32561,)
#3.样本数据集拆分 训练数据集train_data 测试数据集test_data
x_train,x_test,y_train,y_test = train_test_split(feature,target,test_size=0.2,random_state=2021)
#4.观察特征数据看是否需要进行特征工程 由于occupation栏是非数值 所以要one_hot
occ_one_hot = pd.get_dummies(x_train['occupation'])
x_train = pd.concat((x_train,occ_one_hot),axis=1).drop(labels='occupation',axis=1)#axis=1代表列
#5.实例化模型对象
knn = KNeighborsClassifier(n_neighbors=33).fit(x_train,y_train)
#6.使用训练集数据训练模型
#7.测试模型:使用测试数据
occ_one_hot = pd.get_dummies(x_test['occupation'])
x_test = pd.concat((x_test,occ_one_hot),axis=1).drop(labels='occupation',axis=1)#axis=1代表列
#寻找最优的k值
print('开始寻找最优的k值...')
scores = [0]*50
for i in range(1,50):
knn = KNeighborsClassifier(n_neighbors=i).fit(x_train,y_train)
scores[i] = knn.score(x_test,y_test)
t_end = time.time()
print("共计耗时:",(t_end-t_start),'秒')
print('knn测试集评分:',max(scores))
print('最优的k值:',np.argmax(np.array(scores)))