动手学深度学习之权重衰退

使用均方范数作为硬性限制

  • 通过限制参数值的选择范围来控制模型容量$min l(w,b) \quad subject to \quad \left |w \right |^2 \leq \theta $
  • 通常不限制偏移b(限不限制都差不多)
  • 小的 θ \theta θ意味着更强的正则项

使用均方范数作为柔性限制

  • 对每个 θ \theta θ,都可以找到 λ \lambda λ使得之前的目标函数等价于下面 m i n l ( w , b ) + λ 2 ∥ w ∥ 2 min l(w, b)+ \frac{\lambda}{2} \left \|w \right \|^2 minl(w,b)+2λw2
    • 可以通过拉格朗日乘子来证明
  • 超参数 λ \lambda λ控制了正则项的重要程度
    • λ = 0 \lambda = 0 λ=0:无作用
    • λ → ∞ , w ∗ → 0 \lambda \rightarrow \infty, w^* \rightarrow 0 λ,w0

参数更新法则

  • 计算梯度: ∂ ( l ( w , b ) + λ 2 ∥ w ∥ 2 ) ∂ w = ∂ l ( w , b ) ∂ w + λ w \frac{\partial (l(w,b) + \frac{\lambda}{2}\left \| w \right \|^2)}{\partial w} = \frac{\partial l(w, b)}{\partial w} + \lambda w w(l(w,b)+2λw2)=wl(w,b)+λw
  • 时间t更新参数 w t + 1 = ( 1 − η λ ) w t − η ∂ l ( w t , b t ) ∂ w t w_{t+1} = (1-\eta \lambda )w_t - \eta \frac{\partial l(w_t, b_t)}{\partial w_t} wt+1=(1ηλ)wtηwtl(wt,bt)
    • 通常 η λ ≤ 1 \eta \lambda \leq 1 ηλ1,在深度学习中通常叫做权重衰退

总结

  • 权重衰退通过L2正则项使得模型参数不会过大,从而控制模型复杂度。
  • 正则项权重是控制模型复杂度的超参数

权重衰退

权重衰退是最广泛使用的正则化的技术之一

import torch
from torch import nn
from d2l import torch as d2l

像以前一样生成一些数据
y = 0.05 + Σ i = 1 d 0.01 x i + ϵ w h e r e ϵ ∼ N ( 0 , 0.0 1 2 ) y=0.05+\Sigma_{i=1}^{d}0.01x_i + \epsilon \quad where \epsilon \sim N(0,0.01^2) y=0.05+Σi=1d0.01xi+ϵwhereϵN(0,0.012)

n_train, n_test, num_inputs, batch_size = 20, 100, 200, 5
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
train_data = d2l.synthetic_data(true_w, true_b, n_train)
train_iter = d2l.load_array(train_data, batch_size)
test_data = d2l.synthetic_data(true_w, true_b, n_test)
test_iter = d2l.load_array(test_data, batch_size, is_train=False)

初始化模型参数

def init_params():
    w = torch.normal(0, 1, size=(num_inputs, 1), requires_grad=True)
    b = torch.zeros(1, requires_grad=True)
    return [w, b]

定义 L 2 L_2 L2范数惩罚

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

定义训练函数

def train(lambd):
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
        
            # 增加了L2范数惩罚项,广播机制使l2_penalty(w)成为一个长度为`batch_size`的向量。
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())
train(lambd=0)
w的L2范数是: 13.561446189880371

在这里插入图片描述

train(lambd=3)
w的L2范数是: 0.3731406033039093

在这里插入图片描述

def train_concise(wd):
    net = nn.Sequential(nn.Linear(num_inputs, 1))
    for param in net.parameters():
        param.data.normal_()
    loss = nn.MSELoss()
    num_epochs, lr = 100, 0.003
    # 偏置参数没有衰减。
    trainer = torch.optim.SGD([{
        "params": net[0].weight,
        'weight_decay': wd}, {
            "params": net[0].bias}], lr=lr)
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            with torch.enable_grad():
                trainer.zero_grad()
                l = loss(net(X), y)
            l.backward()
            trainer.step()
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数:', net[0].weight.norm().item())
train_concise(0)
w的L2范数: 13.962190628051758

在这里插入图片描述

train_concise(3)
w的L2范数: 0.41519707441329956

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值