动态规划求解矩阵连乘问题

问题描述:
给定n个矩阵{A1,A2,…,An},其中 Ai 与 Ai+1 是可乘的,即相邻的两个矩阵,前面矩阵的列=后面矩阵的行。求计算矩阵连乘积的计算次序,使得计算该矩阵连乘积需要的数乘次数最少。

最优子结构性质:
计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的,即最优解包含着其子问题的最优解,具有最优子结构性质,所以可用动态规划求解。

在这里插入图片描述
代码实现如下:

import numpy as np


def matrix_dimensions(n, d):
    m = np.zeros([n + 1, n + 1], dtype=int)
    sel = np.zeros([n + 1, n + 1], dtype=int)
    for i in range(n - 1):  # 遍历趟数
        for j in range(1, n + 1):#要填的表格的行
            min_value = 9999999
            sel_temp = 0
            if j + i + 1 > 6:
                break
            for k in range(j, j + i + 1):#要填的表格的列
                if min_value > (m[j][k] + m[k + 1][j + i + 1] + d[j - 1] * d[k] * d[j + i + 1]):
                    sel_temp = k
                    min_value = m[j][k] + m[k + 1][j + i + 1] + d[j - 1] * d[k] * d[j + i + 1]
            m[j][j + i + 1] = min_value
            sel[j][j + i + 1] = sel_temp
    return m[1:, 1:], sel[1:, 1:]


if __name__ == '__main__':
    n = 6
    dimensions = [30, 35, 15, 5, 10, 20, 25]
    m, sel = matrix_dimensions(n, dimensions)
    print(m, '\n', sel)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值