题目描述
给你一个整数 n ,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于 n 的 最简 分数 。分数可以以 任意 顺序返回。
示例 1:
输入:n = 2
输出:[“1/2”]
解释:“1/2” 是唯一一个分母小于等于 2 的最简分数。
示例 2:
输入:n = 3
输出:[“1/2”,“1/3”,“2/3”]
示例 3:
输入:n = 4
输出:[“1/2”,“1/3”,“1/4”,“2/3”,“3/4”]
解释:“2/4” 不是最简分数,因为它可以化简为 “1/2” 。
示例 4:
输入:n = 1
输出:[]
思路分析
题目很简单,就两行,返回 0-1直接所有分母小于n的分数,但是只要最简分数。
这道题不算难,应该算是 简单+的难度吧,
麻烦点就在于如何处理非最简分数,比如 2/4这种。
有很多解法,比如使用gcd函数,辗转相除法等等,但是真正在面试或者考试的时候,像这种数学推理的题,我觉得一般情况下可能想不到数学理论,所以我没用数学推理的方法。
其实容易发现,非最简分数的 结果一定是已经出现过的
,比如 2/4 这是一个非最简分数,其最简分数为 1/2 。 而2/4的结果为0.5,1/2的结果也为0.5且 1/2在 2/4前面,所以是已经出现过的。
所以直接暴力法不断增加 分子和分母的值,并且记录每次分子和分母的值,如果已经出现过则不加入答案集。
假设 n = 4
设中间集合为temp
- 开始遍历 分母从2开始 1/2=0.5,检查中间集中是否有0.5,没有 则加入答案集。分子+1,2/2 = 1不符合,这时候重置分子为1,分母+1.
- 此时分母为3,1/3,2/3 检查中间集中是否有 1/3=0.3333,2/3 =0.66666 没有这俩数 则 加入答案集 。和上面一样,3/3不符合,重置分子为1,分母+1。
- 此时分母为4,继续上面的操作 1/4,2/4,3/4 按个检查,到2/4的时候检查到 2/4 = 0.5。 0.5已经在中间集合中,则说明2/4不是最简分数,则不加入答案集。
完整代码
class Solution:
def simplifiedFractions(self, n: int) -> List[str]:
res = []
fz = 1
fm = 2
temp = []
while n >= fm:
while fz < fm:
if fz/fm not in temp:
res.append(str(fz) +'/'+str(fm))
temp.append(fz/fm)
fz +=1
fz = 1
fm +=1
print(res)
return res