经典车间生产调度问题模型及其算法 目录

原创文章,禁止转载、抄袭或用于报告、交流等学术或商业用途
目的说明
从本文起,本博主所有博文将以原创系列性文章更新,旨在帮助更多入门级学者对生产调度问题进行全面的了解。更新频率:争取每周一篇。

作者简介:飞驰的AGV(1997-),男,北京某不知名985大学工业工程学士,北京某不知名985大学智能制造在读博士研究生,研究方向:智能生产系统设计与开发、生产调度优化等。

0 序言
1 绪论
1.1 传统调度问题
1.2 智能生产系统中的调度问题
1.3 小结
2 基于规则的调度
2.1 基于规则的单机调度
2.2 基于规则的多机调度
2.2 基于规则的多机调度(续)
2.3 基于规则的多AGV调度
2.4 小结
3 基于智能优化算法的静态生产调度
3.1 基于遗传算法的单机调度
3.2 基于遗传算法的多机作业调度
3.3 基于遗传算法的柔性作业调度(Flexible Job-Shop scheduling)

附录1 标准Job-shop Benchmark问题数据集
附录2 Job-shop & AGV scheduling Benchmark问题

代码:
基本遗传算法C语言代码
遗传算法求解多目标单机调度问题,Matlab代码
3.2 基于遗传算法的多机调度(待完成)
3.3 基于的柔性多机调度(待完成)
3.4 基于的多机与AGV联合调度(待完成)
3.5 基于
的柔性多机与AGV联合调度(待完成)
4 基于强化学习的动态生产调度
4.1 基于强化学习的单机调度(待完成)
4.2 基于强化学习的多AGV调度(待完成)
4.3 基于强化学习的多机调度(待完成)
4.4 基于强化学习的联合调度(待完成)

5 基于精确求解算法的作业调度
5.1 基于分支定界算法的单机调度

待完成内容敬请期待
如有问题,请留言或私下交流

强化学习生产调度算法是一种利用强化学习方法来优化生产调度问题算法。它通过让一个智能体(agent)与环境进行交互学习,以最大化某种奖励信号来实现最优的生产调度决策。 在Python中,可以使用强化学习库如TensorFlow、PyTorch或Keras来实现强化学习生产调度算法。以下是一个简单的示例代码,展示了如何使用强化学习库来实现一个基于Q-learning的生产调度算法: ```python import numpy as np # 定义生产调度环境 class ProductionEnvironment: def __init__(self): self.state = 0 self.actions = [0, 1, 2] # 定义可选的动作 self.rewards = [1, -1, 0] # 定义每个动作对应的奖励 def step(self, action): self.state += action reward = self.rewards[action] done = False if self.state >= 10: done = True return self.state, reward, done # 定义Q-learning算法 class QLearningAgent: def __init__(self, num_states, num_actions): self.num_states = num_states self.num_actions = num_actions self.q_table = np.zeros((num_states, num_actions)) def choose_action(self, state): return np.argmax(self.q_table[state]) def update_q_table(self, state, action, reward, next_state, learning_rate, discount_factor): q_value = self.q_table[state, action] max_q_value = np.max(self.q_table[next_state]) new_q_value = (1 - learning_rate) * q_value + learning_rate * (reward + discount_factor * max_q_value) self.q_table[state, action] = new_q_value # 定义训练函数 def train_agent(agent, env, num_episodes, learning_rate, discount_factor): for episode in range(num_episodes): state = env.state done = False while not done: action = agent.choose_action(state) next_state, reward, done = env.step(action) agent.update_q_table(state, action, reward, next_state, learning_rate, discount_factor) state = next_state # 创建生产调度环境和Q-learning智能体 env = ProductionEnvironment() agent = QLearningAgent(num_states=10, num_actions=3) # 训练智能体 train_agent(agent, env, num_episodes=1000, learning_rate=0.1, discount_factor=0.9) # 使用训练好的智能体进行生产调度决策 state = env.state done = False while not done: action = agent.choose_action(state) next_state, reward, done = env.step(action) state = next_state print("Action:", action) ``` 这是一个简单的强化学习生产调度算法的Python实现示例。在这个示例中,我们定义了一个生产调度环境和一个基于Q-learning的智能体。通过训练智能体,它可以学习到在不同状态下选择最优的动作来优化生产调度
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值