- 博客(42)
- 收藏
- 关注
原创 SAE层、BPNN层结合的深度学习模型
SAE层= 无监督特征提取器。它像工厂的原材料精炼车间,把原始杂乱的数据“矿石”一步步提炼成纯净、标准化、高价值的“特征成品” (h_finalBPNN层= 监督任务执行器。它像工厂的成品装配和质检车间。接收精炼好的“特征成品”,根据设计图纸和监督员的反馈(标签),不断优化自己的组装流程(权重),最终输出能满足客户要求的终极产品(预测结果)。
2025-06-14 11:35:28
423
原创 深度自编码器 (Deep Autoencoder, DAE)
深度自编码器是自编码器(Autoencoder, AE)的深度神经网络版本,用于。它通过编码(Encoder)和解码(Decoder)结构学习数据的低维表示。
2025-06-13 14:53:56
956
原创 深度信念网络 (DBN, Deep Belief Network)
DBN的革命性贡献在于:(1)提出贪婪分层预训练策略,解决深度网络训练难题(2)建立概率生成框架,统一生成与判别学习(3)开发RBM高效训练算法(对比散度)虽然现代深度学习更多使用端到端训练,DBN的使用以经较少了。但DBN的核心思想仍在自编码器、迁移学习等领域延续。其在概率生成模型、小样本学习等场景仍有独特价值。
2025-06-12 12:17:24
1240
原创 信号处理方法
如何选择方法?线性/非线性?平稳/非平稳?确定性/随机性?离散/连续?去噪?增强?压缩?检测?识别?预测?控制?特征提取?高斯/非高斯?加性/乘性?相关/不相关?强度?LTI/非线性?时变/非时变?计算复杂度、存储、实时性要求、功耗(嵌入式系统)。是否有足够的训练数据(对数据驱动方法)?能否获得测量噪声和信号的统计特性(对维纳滤波器)?是否需要明确物理意义(EMD)?还是结果导向(深度学习)?信号处理是一个庞大且活跃的领域,方法不断发展。
2025-06-11 12:37:42
1122
原创 特征提取TD分析、FD分析和TD–FD分析
特性时域分析 (TD)频域分析 (FD)时频联合分析 (TD-FD)关注点幅度变化、时间波形、统计特性频率成分及其强度频率成分随时间演变核心工具统计计算、相关性FFT (快速傅里叶变换)STFT (短时傅里叶变换)、WT (小波变换)、HHT等时间分辨率优秀 (瞬时值)无(整个时间段平均)良好到优秀(依赖于方法和参数)频率分辨率无优秀 (理论分辨率由信号长度决定)良好(STFT有分辨率折衷,WT自适应分辨率高)处理非平稳信号可能丢失关键全局模式完全失效(只能看平均效应)非常适合(专为此设计)
2025-06-10 13:26:40
864
原创 FDD损失函数 损失函数和梯度的关系
因为余弦相似度测量的是数据之间的几何角度,对每个维度的数值差异不敏感,因此能更好地捕捉特征在方向上的差异。因此,CS属于 [- 1, 1] ,值越小表示方向差异越大,CS 可以很好地考虑了数据间的距离和角度差异。所以设计了一种基于距离和角度两个方向来衡量的损失函数,可以有效地抑制噪声影响,提高机床的鲁棒性。通过阅读这篇文章指出,欧氏距离很难忠实的表示复杂特征空间的相似性。λ 是一个可调整的超参数,用于平衡数据间的距离和角度差的权重。:计算两个向量的点积,表示两个向量在相同方向上的投影乘积和。
2025-06-09 12:23:02
629
原创 机器学习傅里叶变换作用及其变体
傅里叶分析是数学分析中的,其核心思想是将任意周期函数分解为一系列(正弦/余弦波)的叠加。傅里叶分析体系不断演化发展,形成了多种强大的信号处理工具。
2025-06-08 12:16:48
859
原创 PCDF (Progressive Continuous Discrimination Filter)模块构建
(1)高层特征 → 双线性上采样 → 与低层特征逐级融合。:浅层特征(边缘细节)与深层特征(语义信息)的融合。(3)防止信息退化:跳层连接 + 跨尺度拼接。轻量 MLP:CCM 的通道缩减比1/4。(1)使用深度可分离卷积替代标准卷积。:目标尺寸在视频序列中的剧烈变化。:移除通道响应<0.1的特征层。:低质量医疗图像中的伪影干扰。:融合多尺度上下文信息。:动态调整特征响应权重。通道压缩:CSF 中。(2)保留原始分辨率。U-net++网络中。
2025-06-07 21:44:59
620
原创 连续小波变换(Continuous Wavelet Transform, CWT)
连续小波变换(CWT)是一种自适应时频分析工具,能够克服傅里叶变换和短时傅里叶变换的局限性。其核心优势在于通过尺度缩放实现动态时频分辨率调节:大尺度分析低频持续特征,小尺度捕捉高频瞬态事件。CWT采用不同母小波(如Morlet、墨西哥帽)对信号进行卷积运算,揭示信号的时变特性,特别适用于分析非平稳信号中的突变和奇异点。虽然计算复杂度高且信息冗余,但CWT在语音处理、生物医学信号分析、地震检测等领域展现出卓越性能,为复杂信号的时频特征分析提供了强有力的工具。
2025-06-06 13:07:53
1164
原创 GLM-4 模型
GLM-4是一个强大的、面向未来的基础大语言模型和AI智能体引擎。一句话理解GLM-4:它不仅仅是一个更“聪明”的聊天机器人,更是一个能连接现实世界工具、理解图文信息、制定计划、解决问题、并可被高度定制化的AI智能体大脑或核心引擎。
2025-06-05 15:08:22
595
原创 近端策略优化(PPO,Proximal Policy Optimization)
PPO (Proximal Policy Optimization) 是一种通过约束每次策略更新的幅度(主要是 PPO-Clip 版本使用裁剪策略比率的方法,PPO-Penalty 使用KL散度惩罚)来显著提升策略梯度算法训练稳定性和采样效率的里程碑式工作。
2025-06-04 21:18:51
1481
原创 通用优势估计函数(GAE,Generalized Advantage Estimation)详解
通过平滑融合不同步长估计,在偏差与方差间取得平衡,可应用于PPO、TRPO、ACER等策略优化算法。计算效率高,递归实现复杂度,适用于长轨迹。
2025-06-02 18:51:40
1077
原创 精英-探索双群协同优化(Elite-Exploration Dual Swarm Cooperative Optimization, EEDSCO)
一种多群体智能优化算法,其核心思想是通过两个分工明确的群体——和——协同工作,平衡算法的与,从而提高收敛精度并避免早熟收敛。
2025-06-01 18:33:53
1305
原创 混沌映射(Chaotic Map)
是指一类具有混沌行为的离散时间非线性动力系统,通常由递推公式定义。其数学形式为,其中 f 是非线性函数,θ 为参数。它们以简单的数学规则生成复杂的、看似随机的轨迹,是非线性动力学和混沌理论的重要研究对象。混沌映射具有初值敏感性、不可预测性以及对参数变化的依赖性等特点,被广泛应用于数学建模、物理学、信息加密、生物系统分析等领域。:混沌行为是复杂动力学系统中一种看似随机、无序,但实则遵循确定性数学规律的现象。它源于非线性系统的内在敏感性,是混沌理论(Chaos Theory)的核心研究对象。
2025-05-31 08:36:21
1531
2
原创 动态随机扰动策略
动态:扰动参数(如幅度、频率)随算法运行时间或性能反馈自适应调整。随机:通过概率分布(如高斯、均匀分布)生成扰动,引入不确定性。扰动:对参数、梯度、输入等施加微小干扰,打破局部最优或提升泛化。
2025-05-29 10:21:43
1097
原创 帕累托前沿(Pareto Frontier)
帕累托前沿分析通过提供系统性权衡视角,帮助决策者在多目标冲突中找到最优解集。成功应用需结合以下步骤:(1)精准建模:明确定义目标和约束条件。(2)合理选算法:根据问题复杂度选择数学规划或进化方法。(3)结果解释:通过可视化与偏好分析选定最终方案。帕累托前沿是解决复杂多目标问题的核心工具。
2025-05-28 13:09:34
1216
原创 粒子群优化(Particle Swarm Optimization, PSO)
粒子群优化是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出,灵感来源于鸟群或鱼群在觅食时通过信息共享协作寻找最优位置的行为。
2025-05-27 21:41:31
1005
原创 随机森林(Random Forest)学习
是一种基于集成学习的,属于Bagging(Bootstrap Aggregating)方法的一种扩展。它通过组合来提升模型的泛化能力和鲁棒性,广泛用于任务。
2025-05-24 22:49:14
876
原创 响应面法(Response Surface Methodology ,RSM)
RSM通过设计实验、拟合数学模型(如多项式方程)和分析响应曲面,研究多个变量对系统输出的影响,最终实现工艺或产品的优化。
2025-05-23 21:15:18
1344
原创 图注意力网络(GAT, Graph Attention Network)
(1)图数据具有非欧几里得性质(不满足欧几里得几何公理体系(如平行公设、距离定义等)的空间或结构的特性,传统的CNN难以直接处理,所以图卷积应需而生。(2)图卷积(GCN)通过固定权重聚合邻居信息,无法区分不同邻居的重要性,具有局限性。(3)注意力机质允许模型动态调整各邻居的权重,捕捉重要节点间的交互。
2025-05-18 16:35:12
780
原创 YOLO (You Only Look Once)版本历程学习
YOLO是目标检测领域的革命性算法,其核心思想是将检测任务转化为单次,直接在图像上预测边界框和类别概率。将目标检测任务(定位和分类)统一建模为单次的(数据处理流程不分割为独立模块,输入原始信号直接映射到最终目标输出)(针对连续性数值(坐标、概率等)的输出建模)。
2025-05-17 13:11:25
1134
原创 视觉Transformer(Vision Transformer , ViT )
将传统的Transformer架构应用于计算机视觉任务的模型,2020年由Dosovitskiy等人提出,挑战了卷积神经网络(CNN)长期以来的主导地位。
2025-05-16 16:57:00
847
原创 GPT( Generative Pre-trained Transformer )模型:基于Transformer
GPT是由openAI开发的一款基于Transformer架构的预训练语言模型,拥有强大的生成能力和多任务处理能力,推动了自然语言处理(NLP)的快速发展。
2025-05-13 19:51:09
1487
原创 大规模预训练范式(Large-scale Pre-training)
指在巨量无标注数据上,通过自监督学习训练大参数量的基础模型,使其具备通用的表征与推理能力。单一模型可在微调后处理多种NLP(自然语言处理)、CV(计算机视觉)任务。
2025-05-12 22:45:50
797
原创 UNet网络 图像分割模型学习
由Ronneberger等人于2015年提出,专门针对医学图像分割任务,解决了早期卷积网络在下的效率问题和难题。实现与的双向融合如图所示:编码器进行了4步(红框)到达了瓶颈层(紫框),每一步包含并通过通过下采样,到达瓶颈层后,解码器也进行了4步(绿框),使用了转置卷积上采样后与编码器对应层特征拼接(跳跃连接(灰色箭头))后再进行两次卷积。可以看出解码器和编码器非常的对称,呈现一个U型,所以叫UNet。其中:通过池化逐渐扩大感受野。逐步恢复空间分辨率,精确定位目标边界。
2025-05-11 18:33:27
1355
原创 双向Transformer:BERT(Bidirectional Encoder Representations from Transformers)
基于Transformer架构,通过双向上下文建模训练,提高完成任务的性能。
2025-05-10 14:32:38
1441
2
原创 LSTM循环神经网络(Long Short-Term Memory)
LSTM是一种特殊的循环神经网络,用于处理序列数据。通过使用和,缓解传统RNN梯度消失的问题,有效的捕捉时间序列中的长期模式。
2025-05-08 20:32:32
1660
原创 Transformer 学习模型
Transformer 是在2017年提出,舍弃了循环神经网络和卷积神经网络,基于自注意力机质的深度学习模型。之前说过了,循环神经网络就是训练一条线,卷积神经网络相当于训练一个面,都是靠着循环单元,卷积核来进行一遍遍的遍历,而Transformer完全依赖注意力机制。
2025-05-06 18:21:28
1273
原创 自编码器(Autoencoder,AE)
自编码器是一种神经网络结构,通过学习方式对输入的数据进行编码和解码。核心作用是压缩数据特征,也就是由编码器和解码器两部分构成。
2025-05-05 13:20:16
1531
原创 双向递归神经网络(Bidirectional Recurrent Neural Network, BiRNN)
递归神经网络(RNN),是基于输入的信息,从前向后进行建模,相当于就是从历史到现在。举个例子,一个古诗填空,递归神经网络就相当于给出了上一句,让你填写下一句。而双向递归神经网络就是相当于给出了前一句和后一句,让你填写中间的一句。当然这个功能就是联系上下文的作用,在语音识别,情感分析,机器翻译这些方面都有着重要的作用。因为相比于只看你上一句说什么,知道你前一句和后一句来推断中间这一句,会显得更为准确。当然了,显而易见的一点就是准确度虽会提高,但是这个工作量也是大了一倍。(当然不止一倍,只是表面来看)。
2025-05-04 15:18:59
592
原创 深度卷积 之 自适应混合精度量化(AMPQ,Adaptive Mixed-Precision Quantization)
自适应混合精度量化,就是对我们现有的神经网络模型进行压缩加速的方法。核心思想:根据不同层网络的敏感性和对模型的影响程度,动态的分配不同位的量化精度,重要的层可以用8位,相对不敏感的层就可以用4位。在不过分影响模型准确率的前提下,最大化的减少计算量和储存量。
2025-05-03 12:42:39
697
原创 用于深度学习特征提取的级联空洞卷积组(CACG)的学习
CACG就是用逐渐扩大的感受野,从局部到全局,能很好地平衡局部细节和全局语义的提取。通过膨胀率的动态拓展,逐步的融合从局部到全局的多层次的特征。适用场景就是需要同时关注细节与整体场景理解的任务,CACG是很高效且灵活的办法。
2025-05-01 17:02:01
382
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人