代码随想录算法训练营第十二天| 239. 滑动窗口最大值,347.前 K 个高频元素

本文介绍了如何使用单调队列解决滑动窗口中的最大值问题,以及通过HashMap和小顶堆数据结构处理找出前K个高频元素的问题,展示了两个Java代码实现
摘要由CSDN通过智能技术生成

文档讲解:239. 滑动窗口最大值347.前 K 个高频元素

题目链接:239. 滑动窗口最大值347.前 K 个高频元素

思路:

1、第一个题是训练营遇到的第一个困难题,看到这个题首先想到的是将滑动窗口依次往后滑动,将窗口内的元素遍历取出最大值,但是这样做过不了一些大的样例。看题解才学会使用单调队列。通过维护单调队列的pop()、push()、getMax()三个函数来实现。当往队列里push val时,要将该队列中比val小的数据全部pop出去,只留下比val大的数据,当pop val时,将val与队尾元素比较,如果相等就pop出去,如果不等就不进行pop。每次进行getMax就可以获取到最大的数据。

2、第二题也不简单,通过对给定数组使用hashMap进行统计数据,再定义一个优先级队列,通过维护小顶堆,使最后返回的k个数刚好为前k个高频元素。

239. 滑动窗口最大值

class MyQueue{
    
    Deque<Integer> deque = new LinkedList<>();
    
    void pop(int val){
        if(!deque.isEmpty() && val == deque.peek()){
            deque.poll();
        }

    }
    void push(int val){
        while (!deque.isEmpty() && val > deque.getLast()) {
            deque.removeLast();
        }
        deque.add(val);
    }
    int getMax(){
        return deque.peek();
    }
}

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if (nums.length == 1) {
            return nums;
        }

        int[] res = new int[nums.length-k+1];
        int num = 0;
        MyQueue myQueue = new MyQueue();
        for (int i = 0; i < k; i++) {
            myQueue.push(nums[i]);
        }
        res[num++] = myQueue.getMax();
        for (int i = k; i < nums.length; i++) {
            //滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
            myQueue.pop(nums[i - k]);
            //滑动窗口加入最后面的元素
            myQueue.push(nums[i]);
            //记录对应的最大值
            res[num++] = myQueue.getMax();
        }
        return res;
    }
}

347.前 K 个高频元素

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        Map<Integer,Integer> map = new HashMap<>();
        for(int num:nums){
            map.put(num,map.getOrDefault(num,0)+1);
        }

        PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
        for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
            if(pq.size()<k){//小顶堆元素个数小于k个时直接加
                pq.add(new int[]{entry.getKey(),entry.getValue()});
            }else{
                if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
                    pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
                    pq.add(new int[]{entry.getKey(),entry.getValue()});
                }
            }
        }
        int[] ans = new int[k];
        for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
            ans[i] = pq.poll()[0];
        }
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值