思路:
1、第一个题是训练营遇到的第一个困难题,看到这个题首先想到的是将滑动窗口依次往后滑动,将窗口内的元素遍历取出最大值,但是这样做过不了一些大的样例。看题解才学会使用单调队列。通过维护单调队列的pop()、push()、getMax()三个函数来实现。当往队列里push val时,要将该队列中比val小的数据全部pop出去,只留下比val大的数据,当pop val时,将val与队尾元素比较,如果相等就pop出去,如果不等就不进行pop。每次进行getMax就可以获取到最大的数据。
2、第二题也不简单,通过对给定数组使用hashMap进行统计数据,再定义一个优先级队列,通过维护小顶堆,使最后返回的k个数刚好为前k个高频元素。
239. 滑动窗口最大值
class MyQueue{
Deque<Integer> deque = new LinkedList<>();
void pop(int val){
if(!deque.isEmpty() && val == deque.peek()){
deque.poll();
}
}
void push(int val){
while (!deque.isEmpty() && val > deque.getLast()) {
deque.removeLast();
}
deque.add(val);
}
int getMax(){
return deque.peek();
}
}
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length == 1) {
return nums;
}
int[] res = new int[nums.length-k+1];
int num = 0;
MyQueue myQueue = new MyQueue();
for (int i = 0; i < k; i++) {
myQueue.push(nums[i]);
}
res[num++] = myQueue.getMax();
for (int i = k; i < nums.length; i++) {
//滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
myQueue.pop(nums[i - k]);
//滑动窗口加入最后面的元素
myQueue.push(nums[i]);
//记录对应的最大值
res[num++] = myQueue.getMax();
}
return res;
}
}
347.前 K 个高频元素
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>();
for(int num:nums){
map.put(num,map.getOrDefault(num,0)+1);
}
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);
for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序
if(pq.size()<k){//小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(),entry.getValue()});
}else{
if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
pq.poll();//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(),entry.getValue()});
}
}
}
int[] ans = new int[k];
for(int i=k-1;i>=0;i--){//依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}