基于机器学习的曲风识别

该项目通过机器学习对.wav格式的音频进行曲风识别。首先利用scipy.io.wavfile.read()读取音频信息,发现不同曲风的音频图存在显著差异。接着,通过傅里叶变换提取音乐特征,构建训练集并进行训练测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于机器学习的曲风识别

项目链接:https://pan.baidu.com/s/1Mxpj_WjRf2gTOMxGDLe20Q
提取码:v0r8
复制这段内容后打开百度网盘手机App,操作更方便哦

  1. 本项目的音频都是.wav格式,首先用scipy.io.wavfile.read()读取各种类型的音频的信息,观察不同类型的音频的显示信息,代码如下:
import matplotlib.pyplot as plt
from scipy.io import wavfile
import numpy as np
from scipy import fft

music_list = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock']


# 画图比较各个歌曲曲风的音频图,得出各个曲风的声音频率有较大的区别
def plotAudioFig(style, n):
    ad = "D:/BaiduNetdiskDownload/genres/"+style+"/converted/"+style+"."+str(n).zfill(5)+".au.wav"
    # sample_rate每秒采样次数, X是音频信息
    sample_rate, X = wavfile.read(ad)
    sample_rate, X= np.array(sample_rate), np.array(X)
    plt.specgram(x=X, Fs=sample_rate)


plt.figure(figsize=(40,40))
plt.subplot(6,3,1);plotAudioFig("classical","00001")
plt.subplot(6,3,2);plotAudioFig("classical","00002")
plt.subplot(6,3,3);plotAudioFig
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值