科研
文章平均质量分 95
Moresweet猫甜
硕士在读,CSDN人工智能领域新星创作者,阿里云社区乘风者计划专家博主,湖北省制造企业智能管理工程技术研究中心智能硬件组负责人,红帽国际认证工程师、系统管理员,山东省省级优秀毕业生,中国计算机学会(ccf)学生会员,兴趣方向为机器人方向,科研方向为路径规划方向,希望能够通过积累厚积薄发,利用好自己拥有的资源比争取好资源更加重要。
展开
-
蛙跳扩散模型轨迹预测
采用扩散模型生成轨迹预测的顶会论文,研读并分享方法,借鉴AI结合到轨迹预测方面的最新研究,新兴的扩散模型在众多生成任务中展现了其巨大的表示能力,显示出随机轨迹预测的潜力。原创 2024-07-24 11:22:49 · 1095 阅读 · 0 评论 -
基于联邦强化学习的集群机器人协同导航
在收集24个激光传感器读数后,将读数归一化到[0,1]之间,并将归一化读数反向,以便当障碍物接近机器人时,归一化传感器读数接近1,从而进行更有效的神经网络训练。由于群居昆虫能够集体完成单个个体无法完成的具有挑战性的任务,因此群体机器人系统有望在动态复杂环境下完成单个机器人难以完成的具有挑战性的任务。在原论文中,SEDDPG的优点是通过共享可以鼓励探索,从而更快收敛和更好的性能。在模拟评价实验中,每个agent在训练阶段使用4个训练模型,在20次以上的环境中平均4个agent的表现,计算出成功率和完成时间。原创 2024-03-17 19:38:34 · 2043 阅读 · 32 评论 -
浅述热点方向-具身智能
人工智能、机器学习和计算机视觉的最新研究趋势催生了一个不断增长的研究领域,称为“具身智能”。Facebook 人工智能研究中心 (FAIR) 和英特尔实验室一直在引领嵌入式人工智能领域的新项目。“体现”被定义为“为想法提供有形或可见的形式”。简而言之,“Embodied AI”的意思是“虚拟机器人的人工智能”。更具体地说,嵌入式人工智能是为虚拟机器人解决人工智能问题的领域,虚拟机器人可以在虚拟世界中移动、观看、说话和与其他虚拟机器人交互——然后将这些模拟机器人解决方案转移到现实世界的机器人上。原创 2024-01-10 21:49:26 · 1616 阅读 · 11 评论 -
【综述】跨模态可信感知
随着人工智能相关理论和技术的崛起,通信和感知领域的研究引入了一种全新的模式。传统的通信方式不再局限于传统的调制信号,而是可以利用各种介质收集数据并进行编码。同样,感知的输入也不再受限于传感器的数据,而可以包括来自手机扬声器的音波振幅和能量等信息。这一创新使得在原本没有直接控制关系的运动和声波等数据模式之间实现了跨界控制,为跨模态的方法在控制安全方面带来了挑战。在面对跨模态可信感知的安全问题时,各大设备厂商也纷纷采取一系列对策,限制对数据的感知。原创 2023-09-02 23:42:07 · 1079 阅读 · 56 评论 -
Gazebo仿真环境下的强化学习实现
实际上利用Gazebo进行强化学习无非是环境获取上的不同,Gazebo的环境控制需要使用ROS服务进行控制,状态可以通过Gazebo进行获取,同时某些必要数据需要从话题中获取,最重要的是组织获取 的数据(通过话题等)与控制Gazebo的仿真步骤之间的组合。强化学习的手段与传统算法无异,强化学习方法最重要的是要确定动作空间、状态空间、奖励空间,这三个空间是work的前提。在笔者自己的环境中,将获取里程计的话题以及获取激光点的数据替换成为了自己的本机的仿真环境匹配的话题。原创 2023-09-01 20:40:36 · 3324 阅读 · 16 评论 -
基于注意力神经网络的深度强化学习探索方法:ARiADNE
基于深度强化学习(DRL)的ARE方法,在注意力机制的加持下,允许智能体在不同的空间尺度上推理局部地图中不同区域的依赖关系,从而允许智能体在不需要优化长路径的情况下有效地对空间非近视决策进行排序。首先将自主探索表述为覆盖已知可穿越区域的无碰撞图上的顺序决策问题,其中一个节点是机器人的当前位置。然后,使用基于注意力的神经网络选择机器人当前位置的一个相邻节点作为机器人的下一个视点。原创 2023-08-13 15:31:29 · 1269 阅读 · 17 评论 -
基于双视角图表示算法的双向人职匹配偏好建模推荐系统构建
针对偏好匹配问题,采用了双视角图表示学习的算法模型对问题进行了双向偏好建模;通过模拟交互记录的手段,丰富化了数据的语义信息,数据采用look-table和BERT接线性层混合编码的方式进行连接充分提取语义特征并组合偏好ID;将求职者与岗位分为主动选择偏好节点与被动偏好节点的形式,对图神经网络进行建模,通过构建混合偏好传播的策略,更新整个网络;通过自监督增强的双视角排序优化策略,定义四元损失函数的方式优化正样本和负样本距离的偏阶,为求职者和招聘信息的两种表示运用了双视角对比学习的优化函数;通过最大化一致性和最原创 2023-06-06 22:17:40 · 2774 阅读 · 38 评论 -
基于深度强化学习的目标驱动型视觉导航泛化模型
目标是仅使用视觉输入就能导航并到达用户指定目标的机器人,对于此类问题的解决办法一般有两种。基于地图的导航算法或者SLAM系统与最先进的物体检测或图像识别模型的局限性深度卷积神经网络(cnn)与强化学习(RL)相结合的方法优势 深度强化学习(DRL)确实允许以自然的方式管理视觉和运动之间的关系,并且它在无地图视觉导航和许多其他机器人任务中显示出令人印象深刻的结果。局限 在目标驱动的视觉导航中,算法的每次运行都可能指定不同的目标。强化学习不同目标点解决方案在策略中嵌入目标目标和当前状态。由两个网络组成的原创 2023-05-23 22:47:22 · 2731 阅读 · 74 评论 -
神经网络自适应PID控制及其应用
神经网络自适应的PID具有极强的现实意义,因为PID作为影响力和应用面极大的经典控制算法,对于其优化能够带来工业界、控制工程领域的极大便利,在实际的应用场景中,对于PID的使用,往往通过手动调参的方式去实验,在一些损失影响不大的系统中,往往耗费时间,在损失影响较大的系统中,往往会造成一些不可估量的成本耗费,而引入神经网络自适应的PID能够完成无需人工试错的环节,节省大量的人力和资源成本;同时,经典控制理论与人工智能神经网络的结合,将会给控制工程带来很强扩展性,能够实现PID控制算法的参数关联自动调整-解析算原创 2023-01-09 03:00:00 · 6786 阅读 · 16 评论