支持向量机原理(四)SMO算法原理

我只是一名搬运工,以下内容来自:刘建平Pinard:https://www.cnblogs.com/pinard/p/6111471.html


1. 背景

  在SVM的前三篇里,我们优化的目标函数最终都是一个关于 α \alpha α向量的函数。而怎么极小化这个函数,求出对应的 α \alpha α向量,进而求出分离超平面我们没有讲。本篇就对优化这个关于 α \alpha α向量的函数的SMO算法做一个总结。

2. 回顾SVM优化目标函数

  我们首先回顾下我们的优化目标函数:
m i n ⎵ α 1 2 ∑ i = 1 , j = 1 m α i α j y i y j K ( x i , x j ) − ∑ i = 1 m α i \underbrace{ min }_{\alpha} \frac{1}{2}\sum\limits_{i=1,j=1}^{m}\alpha_i\alpha_jy_iy_jK(x_i,x_j) - \sum\limits_{i=1}^{m}\alpha_i α min21i=1,j=1mαiαjyiyjK(xi,xj)i=1mαi s . t .    ∑ i = 1 m α i y i = 0 0 ≤ α i ≤ C s.t. \; \sum\limits_{i=1}^{m}\alpha_iy_i = 0 \\ 0 \leq \alpha_i \leq C s.t.i=1mαiyi=00αiC

  我们的解要满足的KKT条件的对偶互补条件为:
α i ∗ ( y i ( w T x i + b ) − 1 + ξ i ∗ ) = 0 \alpha_{i}^{*}(y_i(w^Tx_i + b) - 1 + \xi_i^{*}) = 0 αi(yi(wTxi+b)1+ξi)=0

  根据这个KKT条件的对偶互补条件,我们有:
α i ∗ = 0 ⇒ y i ( w ∗ ∙ ϕ ( x i ) + b ) ≥ 1 \alpha_{i}^{*} = 0 \Rightarrow y_i(w^{*} \bullet \phi(x_i) + b)\geq1 αi=0yi(wϕ(xi)+b)1 0 &lt; α i ∗ &lt; C ⇒ y i ( w ∗ ∙ ϕ ( x i ) + b ) = 1 0 \lt \alpha_{i}^{*} \lt C \Rightarrow y_i(w^{*} \bullet \phi(x_i) + b)=1 0<αi<Cyi(wϕ(xi)+b)=1 α i ∗ = C ⇒ y i ( w ∗ ∙ ϕ ( x i ) + b ) ≤ 1 \alpha_{i}^{*}=C \Rightarrow y_i(w^{*} \bullet \phi(x_i) + b)\leq 1 αi=Cyi(wϕ(xi)+b)1
  由于 w ∗ = ∑ j = 1 m α j ∗ y j ϕ ( x j ) w^{*} = \sum\limits_{j=1}^{m}\alpha_j^{*}y_j\phi(x_j) w=j=1mαjyjϕ(xj),我们令 g ( x ) = w ∗ ∙ ϕ ( x ) + b = ∑ j = 1 m α j ∗ y j K ( x , x j ) + b ∗ g(x) = w^{*} \bullet \phi(x) + b =\sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x, x_j)+ b^{*} g(x)=wϕ(x)+b=j=1mαjyjK(x,xj)+b,则有:
α i ∗ = 0 ⇒ y i g ( x i ) ≥ 1 \alpha_{i}^{*} = 0 \Rightarrow y_ig(x_i)\geq1 αi=0yig(xi)1 0 &lt; α i ∗ &lt; C ⇒ y i g ( x i ) = 1 0 \lt \alpha_{i}^{*}\lt C \Rightarrow y_ig(x_i)=1 0<αi<Cyig(xi)=1 α i ∗ = C ⇒ y i g ( x i ) ≤ 1 \alpha_{i}^{*}=C \Rightarrow y_ig(x_i)\leq 1 αi=Cyig(xi)1

3. SMO算法的基本思想

  上面这个优化式子比较复杂,里面有m个变量组成的向量 α \alpha α需要在目标函数极小化的时候求出。直接优化时很难的。SMO算法则采用了一种启发式的方法。它每次只优化两个变量,将其他的变量都视为常数。由于 ∑ i = 1 m α i y i = 0 \sum\limits_{i=1}^{m}\alpha_iy_i = 0 i=1mαiyi=0.假如将 α 3 , α 4 , . . . , α m \alpha_3, \alpha_4, ..., \alpha_m α3,α4,...,αm固定,那么 α 1 , α 2 \alpha_1, \alpha_2 α1,α2之间的关系也确定了。这样SMO算法将一个复杂的优化算法转化为一个比较简单的两变量优化问题。

  为了后面表示方便,我们定义 K i j = ϕ ( x i ) ∙ ϕ ( x j ) K_{ij} = \phi(x_i) \bullet \phi(x_j) Kij=ϕ(xi)ϕ(xj)
  由于 α 3 , α 4 , . . . , α m \alpha_3, \alpha_4, ..., \alpha_m α3,α4,...,αm都成了常量,所有的常量我们都从目标函数去除,这样我们上一节的目标优化函数变成下式:
&ThickSpace; m i n ⎵ α 1 , α 1 1 2 K 11 α 1 2 + 1 2 K 22 α 2 2 + y 1 y 2 K 12 α 1 α 2 − ( α 1 + α 2 ) + y 1 α 1 ∑ i = 3 m y i α i K i 1 + y 2 α 2 ∑ i = 3 m y i α i K i 2 \;\underbrace{ min }_{\alpha_1, \alpha_1} \frac{1}{2}K_{11}\alpha_1^2 + \frac{1}{2}K_{22}\alpha_2^2 +y_1y_2K_{12}\alpha_1 \alpha_2 -(\alpha_1 + \alpha_2)+y_1\alpha_1\sum\limits_{i=3}^{m}y_i\alpha_iK_{i1} + y_2\alpha_2\sum\limits_{i=3}^{m}y_i\alpha_iK_{i2} α1,α1 min21K11α12+21K22α22+y1y2K12α1α2(α1+α2)+y1α1i=3myiαiKi1+y2α2i=3myiαiKi2 s . t . &ThickSpace;&ThickSpace; α 1 y 1 + α 2 y 2 = − ∑ i = 3 m y i α i = ς 0 ≤ α i ≤ C &ThickSpace;&ThickSpace; i = 1 , 2 s.t. \;\;\alpha_1y_1 + \alpha_2y_2 = -\sum\limits_{i=3}^{m}y_i\alpha_i = \varsigma\\ 0 \leq \alpha_i \leq C \;\; i =1,2 s.t.α1y1+α2y2=i=3myiαi=ς0αiCi=1,2

4. SMO算法目标函数的优化

  为了求解上面含有这两个变量的目标优化问题,我们首先分析约束条件,所有的 α 1 , α 2 \alpha_1, \alpha_2 α1,α2都要满足约束条件,然后在约束条件下求最小。

  根据上面的约束条件 α 1 y 1 + α 2 y 2 = ς &ThickSpace;&ThickSpace; 0 ≤ α i ≤ C &ThickSpace;&ThickSpace; i = 1 , 2 \alpha_1y_1 + \alpha_2y_2 = \varsigma\;\;0 \leq \alpha_i \leq C \;\; i =1,2 α1y1+α2y2=ς0αiCi=1,2,又由于 y 1 , y 2 y_1,y_2 y1,y2均只能取值1或者-1, 这样 α 1 , α 2 \alpha_1, \alpha_2 α1,α2在[0,C]和[0,C]形成的盒子里面,并且两者的关系直线的斜率只能为1或者-1,也就是说 α 1 , α 2 \alpha_1, \alpha_2 α1,α2的关系直线平行于[0,C]和[0,C]形成的盒子的对角线,如下图所示:
在这里插入图片描述
  由于 α 1 , α 2 \alpha_1, \alpha_2 α1,α2的关系被限制在盒子里的一条线段上,所以两变量的优化问题实际上仅仅是一个变量的优化问题。不妨我们假设最终是 α 2 \alpha_2 α2的优化问题。由于我们采用的是启发式的迭代法,假设我们上一轮迭代得到的解是 α 1 o l d , α 2 o l d \alpha_1^{old}, \alpha_2^{old} α1old,α2old,假设沿着约束方向 α 2 \alpha_2 α2未经剪辑的解是 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc.本轮迭代完成后的解为 α 1 n e w , α 2 n e w \alpha_1^{new}, \alpha_2^{new} α1new,α2new

  由于 α 2 n e w \alpha_2^{new} α2new必须满足上图中的线段约束。假设L和H分别是上图中 α 2 n e w \alpha_2^{new} α2new所在的线段的边界。那么很显然我们有:
L ≤ α 2 n e w ≤ H L \leq \alpha_2^{new} \leq H Lα2newH

  而对于L和H,我们也有限制条件如果是上面左图中的情况,则
L = m a x ( 0 , α 2 o l d − α 1 o l d ) &ThickSpace;&ThickSpace;&ThickSpace; H = m i n ( C , C + α 2 o l d − α 1 o l d ) L = max(0, \alpha_2^{old}-\alpha_1^{old}) \;\;\;H = min(C, C+\alpha_2^{old}-\alpha_1^{old}) L=max(0,α2oldα1old)H=min(C,C+α2oldα1old)

  如果是上面右图中的情况,我们有:
L = m a x ( 0 , α 2 o l d + α 1 o l d − C ) &ThickSpace;&ThickSpace;&ThickSpace; H = m i n ( C , α 2 o l d + α 1 o l d ) L = max(0, \alpha_2^{old}+\alpha_1^{old}-C) \;\;\; H = min(C, \alpha_2^{old}+\alpha_1^{old}) L=max(0,α2old+α1oldC)H=min(C,α2old+α1old)

  
也就是说,假如我们通过求导得到的 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc,则最终的 α 2 n e w \alpha_2^{new} α2new应该为:
α 2 n e w = { H α 2 n e w , u n c &gt; H α 2 n e w , u n c L ≤ α 2 n e w , u n c ≤ H L α 2 n e w , u n c &lt; L \alpha_2^{new}= \begin{cases} H &amp; { \alpha_2^{new,unc} \gt H}\\ \alpha_2^{new,unc} &amp; {L \leq \alpha_2^{new,unc}\leq H}\\ L&amp; {\alpha_2^{new,unc} \lt L} \end{cases} α2new=Hα2new,uncLα2new,unc>HLα2new,uncHα2new,unc<L

  那么如何求出 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc呢?很简单,我们只需要将目标函数对 α 2 \alpha_2 α2求偏导数即可。

  首先我们整理下我们的目标函数。

  为了简化叙述,我们令
E i = g ( x i ) − y i = ∑ j = 1 m α j ∗ y j K ( x i , x j ) + b − y i E_i = g(x_i)-y_i = \sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x_i, x_j)+ b - y_i Ei=g(xi)yi=j=1mαjyjK(xi,xj)+byi

  其中 g ( x ) g(x) g(x)就是我们在第一节里面的提到的 g ( x ) = w ∗ ∙ ϕ ( x ) + b = ∑ j = 1 m α j ∗ y j K ( x , x j ) + b ∗ g(x) = w^{*} \bullet \phi(x) + b =\sum\limits_{j=1}^{m}\alpha_j^{*}y_jK(x, x_j)+ b^{*} g(x)=wϕ(x)+b=j=1mαjyjK(x,xj)+b

  我们令
v i = ∑ j = 3 m y j α j K ( x i , x j ) = g ( x i ) − ∑ j = 1 2 y j α j K ( x i , x j ) − b v_i = \sum\limits_{j=3}^{m}y_j\alpha_jK(x_i,x_j) = g(x_i) - \sum\limits_{j=1}^{2}y_j\alpha_jK(x_i,x_j) -b vi=j=3myjαjK(xi,xj)=g(xi)j=12yjαjK(xi,xj)b

  这样我们的优化目标函数进一步简化为:
W ( α 1 , α 2 ) = 1 2 K 11 α 1 2 + 1 2 K 22 α 2 2 + y 1 y 2 K 12 α 1 α 2 − ( α 1 + α 2 ) + y 1 α 1 v 1 + y 2 α 2 v 2 W(\alpha_1,\alpha_2) = \frac{1}{2}K_{11}\alpha_1^2 + \frac{1}{2}K_{22}\alpha_2^2 +y_1y_2K_{12}\alpha_1 \alpha_2 -(\alpha_1 + \alpha_2)+y_1\alpha_1v_1 + y_2\alpha_2v_2 W(α1,α2)=21K11α12+21K22α22+y1y2K12α1α2(α1+α2)+y1α1v1+y2α2v2

  由于 α 1 y 1 + α 2 y 2 = ς \alpha_1y_1 + \alpha_2y_2 = \varsigma α1y1+α2y2=ς,并且 y i 2 = 1 y_i^2 = 1 yi2=1,可以得到 α 1 用 α 2 \alpha_1用 \alpha_2 α1α2表达的式子为:
α 1 = y 1 ( ς − α 2 y 2 ) \alpha_1 = y_1(\varsigma - \alpha_2y_2) α1=y1(ςα2y2)

  将上式带入我们的目标优化函数,就可以消除 α 1 \alpha_1 α1,得到仅仅包含 α 2 \alpha_2 α2的式子。
W ( α 2 ) = 1 2 K 11 ( ς − α 2 y 2 ) 2 + 1 2 K 22 α 2 2 + y 2 K 12 ( ς − α 2 y 2 ) α 2 − ( ς − α 2 y 2 ) y 1 − α 2 + ( ς − α 2 y 2 ) v 1 + y 2 α 2 v 2 W(\alpha_2) = \frac{1}{2}K_{11}(\varsigma - \alpha_2y_2)^2 + \frac{1}{2}K_{22}\alpha_2^2 +y_2K_{12}(\varsigma- \alpha_2y_2) \alpha_2 - (\varsigma - \alpha_2y_2)y_1- \alpha_2 +(\varsigma - \alpha_2y_2)v_1 + y_2\alpha_2v_2 W(α2)=21K11(ςα2y2)2+21K22α22+y2K12(ςα2y2)α2(ςα2y2)y1α2+(ςα2y2)v1+y2α2v2

  忙了半天,我们终于可以开始求 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc了,现在我们开始通过求偏导数来得到 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc
∂ W ∂ α 2 = K 11 α 2 + K 22 α 2 − 2 K 12 α 2 − K 11 ς y 2 + K 12 ς y 2 + y 1 y 2 − 1 − v 1 y 2 + y 2 v 2 = 0 \frac{\partial W}{\partial \alpha_2} = K_{11}\alpha_2 + K_{22}\alpha_2 -2K_{12}\alpha_2 - K_{11}\varsigma y_2 + K_{12}\varsigma y_2 +y_1y_2 -1 -v_1y_2 +y_2v_2 = 0 α2W=K11α2+K22α22K12α2K11ςy2+K12ςy2+y1y21v1y2+y2v2=0

  整理上式有: ( K 11 + K 22 − 2 K 12 ) α 2 = y 2 ( y 2 − y 1 + ς K 11 − ς K 12 + v 1 − v 2 ) (K_{11} +K_{22}-2K_{12})\alpha_2 = y_2(y_2-y_1 + \varsigma K_{11} -\varsigma K_{12} + v_1 - v_2) (K11+K222K12)α2=y2(y2y1+ςK11ςK12+v1v2)

= y 2 ( y 2 − y 1 + ς K 11 − ς K 12 + ( g ( x 1 ) − ∑ j = 1 2 y j α j K 1 j − b ) − ( g ( x 2 ) − ∑ j = 1 2 y j α j K 2 j − b ) ) =y_2(y_2-y_1 + \varsigma K_{11}- \varsigma K_{12} + (g(x_1) - \sum\limits_{j=1}^{2}y_j\alpha_jK_{1j} -b ) -(g(x_2) - \sum\limits_{j=1}^{2}y_j\alpha_jK_{2j} -b)) =y2(y2y1+ςK11ςK12+(g(x1)j=12yjαjK1jb)(g(x2)j=12yjαjK2jb))

  将 ς = α 1 y 1 + α 2 y 2 \varsigma = \alpha_1y_1 + \alpha_2y_2 ς=α1y1+α2y2带入上式,我们有:
( K 11 + K 22 − 2 K 12 ) α 2 n e w , u n c = y 2 ( ( K 11 + K 22 − 2 K 12 ) α 2 o l d y 2 + y 2 − y 1 + g ( x 1 ) − g ( x 2 ) ) (K_{11} +K_{22}-2K_{12})\alpha_2^{new,unc} = y_2((K_{11} +K_{22}-2K_{12})\alpha_2^{old}y_2 +y_2-y_1 +g(x_1) - g(x_2)) (K11+K222K12)α2new,unc=y2((K11+K222K12)α2oldy2+y2y1+g(x1)g(x2)) &ThickSpace;&ThickSpace;&ThickSpace;&ThickSpace; = ( K 11 + K 22 − 2 K 12 ) α 2 o l d + y 2 ( E 1 − E 2 ) \;\;\;\; = (K_{11} +K_{22}-2K_{12})\alpha_2^{old} + y_2(E_1-E_2) =(K11+K222K12)α2old+y2(E1E2)

  我们终于得到了 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc的表达式:
α 2 n e w , u n c = α 2 o l d + y 2 ( E 1 − E 2 ) K 11 + K 22 − 2 K 12 \alpha_2^{new,unc} = \alpha_2^{old} + \frac{y_2(E_1-E_2)}{K_{11} +K_{22}-2K_{12}} α2new,unc=α2old+K11+K222K12y2(E1E2)

  利用上面讲到的 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc α 2 n e w \alpha_2^{new} α2new的关系式,我们就可以得到我们新的 α 2 n e w \alpha_2^{new} α2new了。利用 α 2 n e w \alpha_2^{new} α2new α 1 n e w \alpha_1^{new} α1new的线性关系,我们也可以得到新的 α 1 n e w \alpha_1^{new} α1new

5. SMO算法两个变量的选择

  SMO算法需要选择合适的两个变量做迭代,其余的变量做常量来进行优化,那么怎么选择这两个变量呢?

5.1 第一个变量的选择

  SMO算法称选择第一个变量为外层循环,这个变量需要选择在训练集中违反KKT条件最严重的样本点。对于每个样本点,要满足的KKT条件我们在第一节已经讲到了:
α i ∗ = 0 ⇒ y i g ( x i ) ≥ 1 \alpha_{i}^{*} = 0 \Rightarrow y_ig(x_i)\geq1 αi=0yig(xi)1 0 &lt; α i ∗ &lt; C ⇒ y i g ( x i ) = 1 0 \lt \alpha_{i}^{*}\lt C \Rightarrow y_ig(x_i)=1 0<αi<Cyig(xi)=1 α i ∗ = C ⇒ y i g ( x i ) ≤ 1 \alpha_{i}^{*}=C \Rightarrow y_ig(x_i)\leq 1 αi=Cyig(xi)1

  一般来说,我们首先选择违反 0 &lt; α i ∗ &lt; C ⇒ y i g ( x i ) = 1 0 \lt \alpha_{i}^{*}\lt C \Rightarrow y_ig(x_i)=1 0<αi<Cyig(xi)=1这个条件的点。如果这些支持向量都满足KKT条件,再选择违反 α i ∗ = 0 ⇒ y i g ( x i ) ≥ 1 \alpha_{i}^{*} = 0 \Rightarrow y_ig(x_i)\geq1 αi=0yig(xi)1 α i ∗ = C ⇒ y i g ( x i ) ≤ 1 \alpha_{i}^{*}=C \Rightarrow y_ig(x_i)\leq 1 αi=Cyig(xi)1的点。

5.2 第二个变量的选择

  SMO算法称选择第二个变量为内层循环,假设我们在外层循环已经找到了 α 1 \alpha_1 α1, 第二个变量 α 2 \alpha_2 α2的选择标准是让 ∣ E 1 − E 2 ∣ |E1-E2| E1E2有足够大的变化。由于 α 1 \alpha_1 α1定了的时候, E 1 E_1 E1也确定了,所以要想 ∣ E 1 − E 2 ∣ |E1-E2| E1E2最大,只需要在 E 1 E_1 E1为正时,选择最小的 E i E_i Ei作为 E 2 E_2 E2, 在 E 1 E_1 E1为负时,选择最大的 E i E_i Ei作为 E 2 E_2 E2,可以将所有的 E i E_i Ei保存下来加快迭代。

  如果内存循环找到的点不能让目标函数有足够的下降, 可以采用遍历支持向量点来做 α 2 \alpha_2 α2,直到目标函数有足够的下降, 如果所有的支持向量做 α 2 \alpha_2 α2都不能让目标函数有足够的下降,可以跳出循环,重新选择 α 1 \alpha_1 α1

5.3 计算阈值b和差值Ei

  在每次完成两个变量的优化之后,需要重新计算阈值b。当 0 &lt; α 1 n e w &lt; C 0 \lt \alpha_{1}^{new}\lt C 0<α1new<C时,我们有
y 1 − ∑ i = 1 m α i y i K i 1 − b 1 = 0 y_1 - \sum\limits_{i=1}^{m}\alpha_iy_iK_{i1} -b_1 = 0 y1i=1mαiyiKi1b1=0

  于是新的 b 1 n e w b_1^{new} b1new为:
b 1 n e w = y 1 − ∑ i = 3 m α i y i K i 1 − α 1 n e w y 1 K 11 − α 2 n e w y 2 K 21 b_1^{new} = y_1 - \sum\limits_{i=3}^{m}\alpha_iy_iK_{i1}- \alpha_{1}^{new}y_1K_{11} - \alpha_{2}^{new}y_2K_{21} b1new=y1i=3mαiyiKi1α1newy1K11α2newy2K21

  计算出 E 1 E_1 E1为:
E 1 = g ( x 1 ) − y 1 = ∑ i = 3 m α i y i K i 1 + α 1 o l d y 1 K 11 + α 2 o l d y 2 K 21 + b o l d − y 1 E_1 = g(x_1) - y_1 = \sum\limits_{i=3}^{m}\alpha_iy_iK_{i1} + \alpha_{1}^{old}y_1K_{11} + \alpha_{2}^{old}y_2K_{21} + b^{old} -y_1 E1=g(x1)y1=i=3mαiyiKi1+α1oldy1K11+α2oldy2K21+boldy1

  可以看到上两式都有 y 1 − ∑ i = 3 m α i y i K i 1 y_1 - \sum\limits_{i=3}^{m}\alpha_iy_iK_{i1} y1i=3mαiyiKi1,因此可以将 b 1 n e w b_1^{new} b1new E 1 E_1 E1表示为:
b 1 n e w = − E 1 − y 1 K 11 ( α 1 n e w − α 1 o l d ) − y 2 K 21 ( α 2 n e w − α 2 o l d ) + b o l d b_1^{new} = -E_1 -y_1K_{11}(\alpha_{1}^{new} - \alpha_{1}^{old}) -y_2K_{21}(\alpha_{2}^{new} - \alpha_{2}^{old}) + b^{old} b1new=E1y1K11(α1newα1old)y2K21(α2newα2old)+bold

  同样的,如果 0 &lt; α 2 n e w &lt; C 0 \lt \alpha_{2}^{new}\lt C 0<α2new<C, 那么有:
b 2 n e w = − E 2 − y 1 K 12 ( α 1 n e w − α 1 o l d ) − y 2 K 22 ( α 2 n e w − α 2 o l d ) + b o l d b_2^{new} = -E_2 -y_1K_{12}(\alpha_{1}^{new} - \alpha_{1}^{old}) -y_2K_{22}(\alpha_{2}^{new} - \alpha_{2}^{old}) + b^{old} b2new=E2y1K12(α1newα1old)y2K22(α2newα2old)+bold

  最终的 b n e w b^{new} bnew为:
b n e w = b 1 n e w + b 2 n e w 2 b^{new} = \frac{b_1^{new} + b_2^{new}}{2} bnew=2b1new+b2new

  得到了 b n e w b^{new} bnew我们需要更新 E i E_i Ei:
E i = ∑ S y j α j K ( x i , x j ) + b n e w − y i E_i = \sum\limits_{S}y_j\alpha_jK(x_i,x_j) + b^{new} -y_i Ei=SyjαjK(xi,xj)+bnewyi

其中,S是所有支持向量 x j x_j xj的集合。

  好了,SMO算法基本讲完了,我们来归纳下SMO算法。

6. SMO算法总结

  输入是m个样本 ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x m , y m ) , {(x_1,y_1), (x_2,y_2), ..., (x_m,y_m),} (x1,y1),(x2,y2),...,(xm,ym),,其中x为n维特征向量。y为二元输出,值为1,或者-1.精度e。
  输出是近似解 α \alpha α

  1 ) 取初值 α 0 = 0 , k = 0 \alpha^{0} = 0, k =0 α0=0,k=0
  2 ) 按照4.1节的方法选择 α 1 k \alpha_1^k α1k,接着按照4.2节的方法选择 α 2 k \alpha_2^k α2k,求出新的 α 2 n e w , u n c \alpha_2^{new,unc} α2new,unc
α 2 n e w , u n c = α 2 k + y 2 ( E 1 − E 2 ) K 11 + K 22 − 2 K 12 \alpha_2^{new,unc} = \alpha_2^{k} + \frac{y_2(E_1-E_2)}{K_{11} +K_{22}-2K_{12}} α2new,unc=α2k+K11+K222K12y2(E1E2)

  3 ) 按照下式求出 α 2 k + 1 \alpha_2^{k+1} α2k+1
α 2 k + 1 = { H L ≤ α 2 n e w , u n c &gt; H α 2 n e w , u n c L ≤ α 2 n e w , u n c ≤ H L α 2 n e w , u n c &lt; L \alpha_2^{k+1}= \begin{cases} H&amp; {L \leq \alpha_2^{new,unc}\gt H}\\ \alpha_2^{new,unc}&amp; {L \leq \alpha_2^{new,unc}\leq H}\\ L&amp; {\alpha_2^{new,unc} \lt L} \end{cases} α2k+1=Hα2new,uncLLα2new,unc>HLα2new,uncHα2new,unc<L

  4 ) 利用 α 2 k + 1 \alpha_2^{k+1} α2k+1 α 1 k + 1 \alpha_1^{k+1} α1k+1的关系求出 α 1 k + 1 \alpha_1^{k+1} α1k+1
  5 ) 按照4.3节的方法计算 b k + 1 b^{k+1} bk+1 E i E_i Ei
  6 ) 在精度e范围内检查是否满足如下的终止条件:
∑ i = 1 m α i y i = 0 \sum\limits_{i=1}^{m}\alpha_iy_i = 0 i=1mαiyi=0 0 ≤ α i ≤ C , i = 1 , 2... m 0 \leq \alpha_i \leq C, i =1,2...m 0αiC,i=1,2...m α i k + 1 = 0 ⇒ y i g ( x i ) ≥ 1 \alpha_{i}^{k+1} = 0 \Rightarrow y_ig(x_i)\geq1 αik+1=0yig(xi)1 0 &lt; α i k + 1 &lt; C ⇒ y i g ( x i ) = 1 0 \lt\alpha_{i}^{k+1} \lt C \Rightarrow y_ig(x_i)=1 0<αik+1<Cyig(xi)=1 α i k + 1 = C ⇒ y i g ( x i ) ≤ 1 \alpha_{i}^{k+1}=C \Rightarrow y_ig(x_i)\leq 1 αik+1=Cyig(xi)1

  7 ) 如果满足则结束,返回 α k + 1 \alpha^{k+1} αk+1,否则转到步骤 2 ) 。

  SMO算法终于写完了,这块在学的时候是非常痛苦的,不过弄明白就豁然开朗了。希望大家也是一样。写完这一篇, SVM系列就只剩下支持向量回归了。


(欢迎转载,转载请注明出处 刘建平Pinard:https://www.cnblogs.com/pinard/p/6111471.html)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值