算法之求一个非负整数的平方根

本文探讨了如何利用二分法优化计算非负整数平方根的问题,通过对比直接循环法,展示了如何避免不必要的计算并提高性能。特别关注了溢出问题的处理和如何利用mid*mid <= x转换条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求一个非负整数的平方根

题目描述

给定一个非负整数 x ,计算并返回 x 的平方根,即实现 int sqrt(int x) 函数。
正数的平方根有两个,只输出其中的正数平方根。
如果平方根不是整数,输出只保留整数的部分,小数部分将被舍去

示例 1:
输入: x = 4
输出: 2

示例 2:
输入: x = 8
输出: 2
解释: 8 的平方根是 2.82842…,由于小数部分将被舍去,所以返回 2

提示:
0 <= x <= 231 - 1

直接想法

由于题目中提到了是非负整数x,则它的平方根一定小与等于自己。不难想到,从1开始,到这个数为止,循环计算,当i * i大于这个数时,上一次算出的i即为我们要找的平方根。
代码如下:

	public int MySqrt(int x)
    {
        int result = 0;
        for (int i = 1; i <= x; i++)
        {
            if (i * i <= x) result = i;
            else return result;
        }
        return result;
    }

进阶思考

我们在上面的方法中做循环时,实际上可以看成一个在有序数组中遍历元素然后将其与自身相乘的运算,因此自然可以想到使用二分法来提高性能。
这里需要注意,由于0 <= x <= 231 - 1,我们在用二分法时,为了防止mid * mid溢出,可以将mid * mid <= x的判断转为 mid <= x / mid的判断。
代码如下:

	public int MySqrt(int x)
    {
        int left = 0, right = x;
        while (left < right)
        {
            int mid = left + (right - left) / 2 + 1;
            if (x / mid >= mid)
            {
                left = mid;
            }
            else
            {
                right = mid - 1;
            }
        }
        return left;
    }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秦朝炼丹师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值