题目描述
给定一个非负整数 x ,计算并返回 x 的平方根,即实现 int sqrt(int x) 函数。
正数的平方根有两个,只输出其中的正数平方根。
如果平方根不是整数,输出只保留整数的部分,小数部分将被舍去。
示例 1:
输入: x = 4
输出: 2
示例 2:
输入: x = 8
输出: 2
解释: 8 的平方根是 2.82842…,由于小数部分将被舍去,所以返回 2
提示:
0 <= x <= 231 - 1
直接想法
由于题目中提到了是非负整数x,则它的平方根一定小与等于自己。不难想到,从1开始,到这个数为止,循环计算,当i * i大于这个数时,上一次算出的i即为我们要找的平方根。
代码如下:
public int MySqrt(int x)
{
int result = 0;
for (int i = 1; i <= x; i++)
{
if (i * i <= x) result = i;
else return result;
}
return result;
}
进阶思考
我们在上面的方法中做循环时,实际上可以看成一个在有序数组中遍历元素然后将其与自身相乘的运算,因此自然可以想到使用二分法来提高性能。
这里需要注意,由于0 <= x <= 231 - 1,我们在用二分法时,为了防止mid * mid溢出,可以将mid * mid <= x的判断转为 mid <= x / mid的判断。
代码如下:
public int MySqrt(int x)
{
int left = 0, right = x;
while (left < right)
{
int mid = left + (right - left) / 2 + 1;
if (x / mid >= mid)
{
left = mid;
}
else
{
right = mid - 1;
}
}
return left;
}