【深度学习】pytorch的卷积层的padding

torch.nn.Conv2d()为torch中的卷积层,参数如下:

    def __init__(self, in_channels, 
    	         out_channels,
    			 kernel_size, stride=1,
                 padding=0, dilation=1, 
                 groups=1, bias=True,           
                 padding_mode='zeros'):

padding操作是用来对原有输入张量外围进行填补,以达到经过卷积之后得到的输出张量是我们所想要的维度。通常情况下padding用的都是全0填补,而torch中的padding采用的是四周全部进行填补的方式,padding的值为每一边所填补的层数。
举个栗子:
假设现有(1, 3, 3)维度的张量,1表示通道数,我希望经过一层卷积层之后得到的输出为(1, 5, 5)的维度,采用尺寸为(3,3)的过滤器,步长为1,根据输入大小和输出大小的计算公式,得到padding的值为2,即原张量上下左右各填补两层
在这里插入图片描述
得到的卷积层的权重、偏置和输出张量如下所示:
在这里插入图片描述
通过卷积层的运算可以得出torch的padding操作确实是四周全部进行填充。有的时候通过上述公式计算padding的值时可能会遇到不能整除的现象,此时必须将padding的值向上取整,这样填补后的张量会在H和W维度上各多一层,只要过滤器无法覆盖就不会对其进行卷积。
测试代码:

import torch
import torch.nn as nn

x = torch.randn(1, 3, 3)
print(x)

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(
                in_channels=1,
                out_channels=1,
                kernel_size=3,
                stride=1,
                padding=2
            )
        )
    def forward(self, input):
        input = input.view(1, 1, 3, 3)
        return self.model(input)

model = Model()
param = {}
for name, parameters in model.named_parameters():
    param[name] = parameters.detach().numpy()
print(param)
x_out = model(x)
print(x_out)
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页