运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 3000
0 <= value <= 104
最多调用 3 * 104 次 get 和 put
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。``
class ListNode:
"""
定义双向链表的节点类
"""
def __init__(self, key=None, value=None):
self.key = key
self.value = value
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.hashmap = {}
# 新建两个头结点和尾结点
self.head = ListNode()
self.tail = ListNode()
# 初始化链表
self.head.next = self.tail
self.tail.prev = self.head
# 因为get put操作都会将新更新的元素移动到末尾,保持最新的元素在末尾
def move_node_to_tail(self, key) -> None:
# 将node取出来 插入到尾结点之前,尾结点保存的就是最新更新的结点
node = self.hashmap.get(key)
# 先把node断开
node.prev.next = node.next
node.next.prev = node.prev
# 再把node插入最新的位置,也就是尾结点前面
node.next = self.tail
node.prev = self.tail.prev
self.tail.prev.next = node
self.tail.prev = node
def get(self, key: int) -> int:
if key in self.hashmap:
self.move_node_to_tail(key) # 在当前hash表中存在,那么直接移动到更新位置
result = self.hashmap.get(key, -1) # 存在key返回value,不存在返回value
if result == -1:
return result
return result.value
def put(self, key: int, value: int) -> int:
if key in self.hashmap:
# 如果当前要插入的元素存在,那么更新并移动到更新位置即可
self.hashmap[key].value = value
self.move_node_to_tail(key)
else:
# 当前插入的元素不存在,要判断容量 要么得删除元素
if len(self.hashmap) == self.capacity:
# 容量满了,删掉不经常使用也就是头结点
self.hashmap.pop(self.head.next.key)
self.head.next = self.head.next.next
self.head.next.prev = self.head
# 容量满了删除元素之后 或者 容量不满的时候
# 我直接插入 道尾结点 因为是新进来的元素
new = ListNode(key, value)
self.hashmap[key] = new
new.prev = self.tail.prev
new.next = self.tail
new.prev.next = new
self.tail.prev = new