玻尔兹曼分布

本文介绍了玻尔兹曼分布的背景和基本概念,它是为了解决Hopfield神经网络中伪吸引子问题而引入的重要理论。通过分析玻尔兹曼分布的推导过程,阐述了其与模拟退火算法的关系,为后续构建随机神经网络或玻尔兹曼机奠定基础。玻尔兹曼分布源于统计力学,与熵和能量状态相关,其在深度学习中的应用将在后续章节进一步探讨。
摘要由CSDN通过智能技术生成

上一节我们从Hopfield神经网络存在伪吸引子的问题出发,为了解决伪吸引子带来的问题,详细介绍了模拟退火算法,本节也是基础性的讲解,为了解决伪吸引子还需要引入另外一个重要概念即:玻尔兹曼分布。本篇将详解玻尔兹曼分布,但是还是先说说为什么要引入玻尔兹曼分布,因为为了解决Hopfield神经网络的伪吸引子的问题,引入模拟退火算法和玻尔兹曼分布,下一节将在Hopfield神经网络中加入这两个算法,组合成一个新的神经网络即随机神经网络或者玻尔兹曼机。因为本人喜欢刨根问底,所以会深入挖掘引入的知识,这样下节讲起来就会很容易,也会更容易理解,不会觉的太突兀,另外一点就是希望能深入理解和掌握玻尔兹曼机,因为后面还会引入受限玻尔兹曼机、深度信念网络、CNN、RNN。因此我们正在慢慢的靠近深度学习的核心区域,前面就说过,所有的算法都不是拍着脑袋想出来的,他是根据出现的问题,慢慢研究出算法的,我们要想深入理解深度学习,沿着他的发展历程学习将更容易,更具有体系化,以后遇到问题也知道如何解决,您说呢?好,废话不多说,下面就开始主题:玻尔兹曼分布。

玻尔兹曼分布:

物理学(特别是统计力学)中,麦克斯韦 - 玻尔兹曼分布是以詹姆斯·克拉克斯·马克斯韦尔路德维希·波兹曼命名的特定概率分布

这是第一次定义,并且用于描述颗粒速度理想化的气体,其中所述颗粒的固定容器内自由移动,而不会彼此互动,除了非常简短的碰撞,其中它们与彼此或与它们的热环境交换能量和动量。在该上下文中,术语“颗粒”仅指气态颗粒(原子分子),并且假设颗粒系统已达到热力学平衡[1] 这种粒子的能量遵循所谓的 

玻尔兹曼分布是一种统计分布,用于描述粒子在热力学平衡下的能量分布。在机器学习中,玻尔兹曼分布可以应用于受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)模型中。 受限玻尔兹曼机是一种生成式的机器学习模型,能够学习样本的概率分布。它是玻尔兹曼机的一个简化版本,因为玻尔兹曼机在实际应用中很复杂,所以不常被使用。受限玻尔兹曼机通过引入约束,使模型变得更加简单。它可以学习样本的概率分布,并根据学到的概率分布生成符合该分布的样本。例如,可以使用受限玻尔兹曼机学习人脸图片的概率分布,然后生成一张新的、在现实世界中不存在的人脸。 在Python中,可以使用scipy库的stats模块来进行玻尔兹曼分布的采样实验。具体操作可以参考以下代码: ```python from scipy.stats import bernoulli import numpy as np import matplotlib.pyplot as plt # 生成服从玻尔兹曼分布的随机数 p = 0.5 # 可根据需要设定概率参数 r = bernoulli.rvs(p, size=10000) # 统计随机数的特征 sample_mean = np.mean(r) sample_variance = np.var(r) # 绘制直方图 plt.hist(r, bins='auto', density=True) plt.title("Histogram with 'auto' bins") plt.grid() plt.show() # 输出统计特征 print('sample means of r = {0}'.format(sample_mean)) print('sample variance of r = {0}'.format(sample_variance)) ``` 以上代码首先导入了必要的库,包括scipy.stats的bernoulli模块用于生成服从玻尔兹曼分布的随机数。然后通过调用`bernoulli.rvs()`函数生成10000个服从指定概率分布的随机数。接下来,使用`np.mean()`和`np.var()`函数计算随机数的均值和方差,并使用`plt.hist()`函数绘制随机数的直方图。最后,使用`print()`函数输出统计特征。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [受限玻尔兹曼机的python参考实现](https://blog.csdn.net/u013749051/article/details/120670133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [基于python/scipy学习概率统计(2):伯努利分布(Bernoulli Distribution)](https://blog.csdn.net/chenxy_bwave/article/details/120847774)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值